首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
In this investigation, solution grafting of acrylic acid (AA) in presence of benzoyl peroxide (BPO) was carried out onto metallocene‐based “poly(ethylene‐octene) elastomers” (POE) as well as “poly(ethylene‐butene) elastomers” (PBE), to impart polarity on the non‐polar rubbery matrix and also to study the effects of crystallinity and pendant chain length on the “grafting percentage” and “percent gel yield” at optimized conditions for all the POE and PBE systems. Reaction parameters were optimized on the basis of the relative proportions of graft and gel formations obtained through %weight gain, Fourier Transform infrared spectroscopy and elemental analysis. The effect of grafting at its maximum level on various physico‐mechanical properties was also thoroughly investigated by using X‐ray diffraction (XRD), differential scanning calorimetry (DSC), mechanical, dynamic mechanical (DMTA), and thermogravimetric analysis (TGA) and the properties were correlated with the structure of the modified polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5529–5540, 2007  相似文献   

2.
Biodegradable polyurethane elastomers with the potential for applications in medical implants were synthesized from the reaction of epoxy‐terminated polyurethane prepolymers (EUPs) with 1,6‐hexamethylenediamine as a curing agent. EUPs were themselves prepared from the reaction of glycidol and isocyanate‐terminated polyurethanes made from different molecular weights of poly(ε‐caprolactone) (CAPA) and 1,6‐hexamethylene diisocyanate. All materials were characterized by spectroscopic methods. The curing conditions were optimized by gel content measurements. The curing kinetic and kinetic parameters were determined from differential scanning calorimetry measurements. The effects of changing the crosslink density and crystallinity of elastomers via the alteration of the CAPA polyol molecular weight on the physical, mechanical, and degradation properties of the final elastomeric polymers were examined fully. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2985‐2996, 2005  相似文献   

3.
传统的液晶弹性体材料多采用丙烯酸酯类或聚硅氧烷类分子,通过自由基聚合制备.然而由于自由基聚合易被氧气阻聚,固化过程收缩率高且内应力大,传统液晶弹性体材料的力学性能并不是很优异.为解决这一问题,本文合成了带有环氧基团的液晶单体和交联剂,使用碘鎓盐作为引发剂,通过光引发阳离子反应,用原位聚合交联法制备了环氧液晶弹性体材料.光引发阳离子聚合和传统自由基聚合相比,不受氧气影响且弹性体固化时体积收缩率小.对制备出的液晶弹性体材料的晶相和力学等性能进行探究和表征,发现其比传统的丙烯酸酯类或者聚硅氧烷类液晶弹性体材料具有更优异的力学性能,在清亮点以上,其弹性模量达到了0.92 MPa.  相似文献   

4.
Elastomeric networks were prepared from ethylene-propylene-diene (DPDM) terpolymers containing 5-ethylidene-2-norbornene as the diene monomer incorporated to facilitate crosslinking. Such materials, although highly elastomeric, show some crystallinity over much of the compositional range and thus an understanding of their mechanical properties requires characterization of this crystallinity in both the stretched and unstretched states. The properties and techniques used in the present investigation for this purpose were differential scanning calorimetry, stress-strain isotherms (at various extension rates), stress-temperature coefficients, birefringence and stress-optical coefficients, polarized light microscopy, small-angle light scattering, and wide-angle x-ray scattering. Correlations of the various types of results obtained are used to elucidate the dependence of EPDM network crystallization on composition, strain, and temperature. It was found to be particularly important to use a wide variety of techniques to provide a reliable characterization of the poorly developed crystallinity present in typical EPDM elastomers.  相似文献   

5.
Biodegradable synthetic elastomers with tunable mechanical and physicochemical properties remain attractive materials for soft tissue engineering. We have recently synthesized novel poly(1,3‐diamino‐2‐hydroxypropane‐co‐glycerol sebacate)‐co‐poly(ethylene glycol) (APS‐co‐PEG) biodegradable elastomers. This class of PEGylated elastomers has widely tunable mechanical and degradation properties compared wtih currently available biodegradable elastomers. To further investigate the biological application of this class of elastomers, we fabricated hybrid APS‐co‐PEG/polycaprolactone (PCL) porous scaffolds by electrospinning. The fiber morphology, chemical composition, mechanical properties, degradability, and cytocompatibility of hybrid APS‐co‐PEG/PCL electrospun scaffolds were characterized. These scaffolds exhibited a wide range of mechanical properties and similar cytocompatibility to PCL scaffolds. Importantly, PEGylation inhibited platelet adhesion on all APS‐co‐PEG/PCL electrospun scaffolds when compared with PCL and APS/PCL scaffolds, suggesting a potential role in mitigating thrombogenicity in vivo. Additionally, APS‐25PEG/PCL scaffolds were found to be mechanically analogous to human heart valve leaflet and supported attachment of human aortic valve cells. These results reveal that hybrid APS‐co‐PEG/PCL scaffolds may serve as promising constructs for soft tissue engineering, especially heart valve tissue engineering. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
Fibrous scaffolds, which can mimic the elastic and anisotropic mechanical properties of native tissues, hold great promise in recapitulating the native tissue microenvironment. We previously fabricated electrospun fibrous scaffolds made of hybrid synthetic elastomers (poly(1,3‐diamino‐2‐hydroxypropane‐co‐glycerol sebacate)‐co‐poly (ethylene glycol) (APS‐co‐PEG) and polycaprolactone (PCL)) to obtain uniaxial mechanical properties similar to those of human aortic valve leaflets. However, conventional electrospinning process often yields scaffolds with random alignment, which fails to recreate the anisotropic nature of most of the soft tissues such as native heart valves. Inspired by the structure of native valve leaflet, we designed a novel valve leaflet‐inspired ring‐shaped collector to modulate the electrospun fiber alignment and studied the effect of polymer formulation (PEG amount [mole %] in APS‐co‐PEG; ratio between APS‐co‐PEG and PCL; and total polymer concentration) in tuning the biaxial mechanical properties of the fibrous scaffolds. The fibrous scaffolds collected on the ring‐shaped collector displayed anisotropic biaxial mechanical properties, suggesting that their biaxial mechanical properties are closely associated with the fiber alignment in the scaffold. Additionally, the scaffold stiffness was easily tuned by changing the composition and concentration of the polymer blend. Human valvular interstitial cells (hVICs) cultured on these anisotropic scaffolds displayed aligned morphology as instructed by the fiber alignment. Overall, we generated a library of biologically relevant fibrous scaffolds with tunable mechanical properties, which will guide the cellular alignment.  相似文献   

7.
聚氨酯弹性体的摩擦性能在诸如船舶、汽车、生物医用等领域具有十分重要的意义,而通过化学修饰策略实现该类材料摩擦性能的精细设计,仍具有十分迫切的研究需求和广泛的应用前景。 本工作以对苯二异氰酸酯(PPDI)与聚四氢呋喃醚二醇(PTMG)为原料,通过调节1,4-丁二醇与三羟甲基丙烷两种扩链交联剂的混合比例,采用预聚体法合成了具备不同交联度的PPDI基聚氨酯弹性体。 其中,傅里叶变换衰减全反射光谱(FTIR-ATR)、广角X射线衍射(WAXD)、差示扫描量热仪(DSC)等表征结果表明,聚氨酯弹性体中硬段和软段的结晶度随交联度的提升均呈下降趋势。 同时,力学测试表明,材料的弹性模量随之降低,而PPDI基聚氨酯弹性体摩擦系数则明显增大。 此外,滞后回环曲线表明,交联度的改变影响了PPDI基聚氨酯弹性体的阻尼特性,而聚氨酯弹性体阻尼的差异在其摩擦性能对速率的依赖关系中则有所体现。 本工作由此提出,利用不同交联度下PPDI基聚氨酯中软硬段结晶度的变化,在对材料弹性模量和损耗模量进行可控调节的同时,能够实现对其摩擦性能的改变,为PPDI基聚氨酯弹性体的摩擦性能调控提供了一种简单有效的途径。  相似文献   

8.
Omniphobic fluorogel elastomers were prepared by photocuring perfluorinated acrylates and a perfluoropolyether crosslinker. By tuning either the chemical composition or the temperature that control the crystallinity of the resulting polymer chains, a broad range of optical and mechanical properties of the fluorogel can be achieved. After infusing with fluorinated lubricants, the fluorogels showed excellent resistance to wetting by various liquids and anti‐biofouling behavior, while maintaining cytocompatiblity.  相似文献   

9.
Omniphobic fluorogel elastomers were prepared by photocuring perfluorinated acrylates and a perfluoropolyether crosslinker. By tuning either the chemical composition or the temperature that control the crystallinity of the resulting polymer chains, a broad range of optical and mechanical properties of the fluorogel can be achieved. After infusing with fluorinated lubricants, the fluorogels showed excellent resistance to wetting by various liquids and anti‐biofouling behavior, while maintaining cytocompatiblity.  相似文献   

10.
In order to explore the application of click chemistry in the field of elastomer materials, the comparison between the properties of polyurethane and polytriazole elastomers has been carried out. Propargyl‐terminated ethylene oxide‐tetrahydrofuran copolymer (PTPET) has been prepared from the ethylene oxide‐tetrahydrofuran copolymer (PET) by end modification. Using polyisocyanate N100 and polyazide compounds as cross‐linkers, PET polyurethane and PTPET polytriazole elastomers have been prepared through urethane and copper‐catalyzed azide‐alkyne huisgen [3 + 2] dipolar cycloaddition reactions, respectively. Mechanical properties indicate that, to be different from those of polyurethane elastomers, the modulus E and stress σb of polytriazole elastomers increase at first, and then decrease with the increase in R. At around the stoichiometric ratio, the modulus E and stress σb reach a maximum, and the strain εb reaches a minimum. Swelling tests demonstrate that the Mc of polytriazole elastomers has a minimum value at the stoichiometric ratio. The dynamic mechanical analysis indicates that both polyurethane and polytriazole elastomers have the same glass transition temperature of ?64°C, although polytriazole elastomers exhibit lower dissipation factor tan δ. Thermal analysis shows that polytriazole elastomers have better thermal stability than polyurethane elastomers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.

End‐linking poly(dimethylsiloxane) was used to prepare bimodal elastomers networks so as to have inhomogeneous nanostructures, and also to prepare others having very broadly multimodal chain‐length distributions. Macroscopic phase separation, probably high crosslink density clusters, was observed to occur in some of the bimodal networks. The mechanical properties in simple extension and in equilibrium swelling were measured. The bimodal elastomers that were not obviously inhomogeneous showed very good mechanical properties, but the macroscopically phase‐separated networks, and the broadly multimodal network were weak. Analysis of the Mooney‐Rivlin profiles suggests that the reinforcing mechanism could have a structural component in addition to that from the limited extensibilities of the short chains. The mechanical properties and the extents of swelling support the cluster conjecture, in accord with previous morphological studies on spatially‐inhomogeneous polysiloxane elastomers.  相似文献   

12.
Oxazolidone-incorporated polyurethane elastomers based on hydroxyl terminated polycaprolactone, were synthesized and characterized. Reaction of epoxy-terminated polyurethane with isocyanate librated from a blocked polyisocyanate was the strategy followed. The reaction condition was optimized through preparation of model oxazolidones. Epoxy-terminated polyurethanes were prepared from reaction of glycidol with NCO-terminated polyurethane prepolymers and curing agent was synthesized from the reaction of trimethylol propane, toluene diisocyanate and N-methyl-aniline. Incorporation of heterocyclic oxazolidone groups into the polyurethane backbone caused improvements in thermal and mechanical properties. Investigation of structure-property relationship for prepared elastomers showed that the main determining factors for observed properties were crosslink density, crystallinity and content of oxazolidone rings.  相似文献   

13.
In this study, it was aimed to investigate octavinyl‐polyhedral oligomeric silsesquioxane (OV‐POSS) incorporation into natural rubber (NR)/butadiene rubber (BR) elastomer blends as a potential compatibilizer. The effects of OV‐POSS loading levels on the thermal, mechanical, morphological, and dynamic‐mechanical properties of elastomer blends were explored. Fourier‐Transform Infrared Spectrometer (FTIR), Temperature Scanning Stress Relaxation (TSSR), and Differential Scanning Calorimetry (DSC) results revealed the conceivable effect of OV‐POSS nanoparticles in the vulcanization through reacting with sulfur and/or elastomers. Scanning Electron Microscope (SEM), X‐Ray Diffraction (XRD), and tensile test measurements supported the improvement of mechanical properties due to homogeneous dispersion at low loading levels. On the other hand, high amount of OV‐POSS incorporation (7 and 10 phr) resulted in a decrease in mechanical properties, owing to the agglomeration of nanoparticles. According to contact angle and Dynamic mechanical analysis (DMA) results, it could be concluded that OV‐POSS nanoparticles were localized at the interface of the elastomers and enabled the compatibilization of immiscible NR/BR blends.  相似文献   

14.
Binary blends using metallocene ethylene‐1‐octene copolymer as matrix were prepared and subjected to electron beam (EB) irradiation (50, 100, and 200 kGy). Gel content and melt flow index values indicated that the blends were crosslinking. Fourier transform infrared‐ATR spectroscopy was used to study the crosslinking and oxidative degradation of the blends via tertiary carbon and carboxyl group formation, respectively. Thermal and mechanical properties were studied showing that the crystallinity of both matrix and dispersed phase decreased with irradiation dose, and that the thermoplastic elastomers with good mechanical properties may be obtained by EB irradiation. Chain branching and scission were also detected at all irradiation doses, although at the highest doses (200 kGy) a crosslinking reaction was the most predominantly observed effect. The successive self‐nucleation annealing technique was used to determine the EB irradiation effects on crystallization of some blends in which crosslinking and chain branching take place, modifying the chain's structure and therefore crystalline regions in the matrix and the dispersed phase. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2432–2440, 2007  相似文献   

15.
A series of biodegradable, thermoplastic polyurethane elastomers poly(?‐caprolactone‐co‐lactide(polyurethane [PCLA–PU] were synthesized from a random copolymer of L ‐lactide (LA) and ?‐caprolactone (CL), hexamethylene diisocyanate, and 1,4‐butanediol. The effects of the LA/CL monomer ratio and hard‐segment content on the thermal and mechanical properties of PCLA–PUs were investigated. Gel permeation chromatography, IR, 13C NMR, and X‐ray diffraction were used to confirm the formation and structure of PCLA–PUs. Through differential scanning calorimetry, tensile testing, and tensile‐recovery testing, their thermal and mechanical properties were characterized. Their glass‐transition temperatures were below ?8 °C, and their soft domains became amorphous as the LA content increased. They displayed excellent mechanical properties, such as a tensile strength as high as 38 MPa, a tensile modulus as low as 10 MPa, and an elongation at break of 1300%. Therefore, they could find applications in biomedical fields, such as soft‐tissue engineering and artificial skin. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5505–5512, 2006  相似文献   

16.
A new approach to prepare and characterize double network elastomeric systems was investigated. A styrene‐ethylene‐co‐butylene‐styrene (SEBS) triblock copolymer system containing physical crosslinks was used to achieve a double network by additional crosslinking using ultra‐violet (UV) light. An ethylene–propylene–diene monomer (EPDM) terpolymer system containing chemical crosslinks was used to achieve a conventional double network using UV crosslinking. Properties from conventional monotonic tensile tests, dynamic mechanical analysis, and thermomechanical properties were investigated. These double network elastomers show a transition between competitive and collaborative behavior in their mechanical properties and lower coefficients of thermal expansion arising from a competition of the networks. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 778–789, 2010  相似文献   

17.
Direct sulfonation and styrene‐mediated sulfonation were carried out onto metallocene‐based poly(ethylene‐co‐octene) (POE) and poly(ethylene‐co‐butene) (PBE) elastomers to impart polarity on the completely nonpolar rubbery matrices and to prepare a new class of elastomer. The influence of styrene‐grafting and pendant chain length on the degree of sulfonation was also studied. The effects of sulfonation, styrene grafting and styrene‐mediated sulfonation at their optimized levels on various physicomechanical properties were thoroughly investigated, and the resultant properties were correlated with structures of the modified elastomers. Higher extent of sulfonic acid groups were introduced through direct sulfonation in comparison with the styrene‐mediated sulfonation, whereas better thermal and mechanical properties were obtained through styrene‐mediated sulfonation in comparison with the direct sulfonation process. PBE had shown higher degree of sulfonation and percentage grafting than POE. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8023–8040, 2008  相似文献   

18.
Catalyst‐free recyclable polybutadiene (PB) elastomer cross‐linked by dynamic imine bonds is prepared by the reaction between amine functionalized PB and aldehyde cross‐linkers. The dynamic nature of imine bond is investigated by rheometry and creep‐recovery experiments. The cross‐linking degrees are regulated by incorporating different amount of aldehyde, and their influence on the cross‐linked elastomers is investigated in detail. The temperature‐induced imine exchange reactions enable recycling of the cross‐linked PB elastomers and their mechanical properties are almost unchanged after several cycles. It is important to note that the elastomers also show excellent solvent resistance even at high temperature. The good mechanical properties, solvent resistance and recycling ability of the resultant PB elastomer demonstrate the superiority of the imine bonds in the design of recyclable polymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2011–2018  相似文献   

19.
Segmented poly(ester-urethanes) (PU) elastomers based on poly(ethylene diethylene adipate)diols as a soft segment and aromatic diisocyanates in the hard segment were synthesized by a conventional method. The precipitated PU elastomers films have been degraded after a limited exposure to free radical agents. An increase of the ratio of radical agents had an increase in the hard segment content which was associated with increased hard microdomain crystallinity, hardness and improvement in mechanical properties. It is suggested that the superior mechanical performance may be related to a interconnecting hard microdomain texture by a radical cross-linking process. The present study attempts to correlate the physical-mechanical properties of the precipitated PU films with the concentration of the free radical agents. In all cases, the effect of free radical cross-linking was to increase the ultimate tensile strain.  相似文献   

20.
Polylactide (PLA) is a fully biodegradable and recyclable plastic, produced from a bio‐derived monomer: it is a circular economy plastic. Its properties depend upon its stereochemistry and isotactic PLA shows superior thermal‐mechanical performances. Here, a new means to control tacticity by exploiting rotaxane conformational dynamism is described. Dynamic achiral [2]rotaxanes can show high isoselectivity (Pi=0.8, 298 K) without requiring any chiral additives and enchain by a chain end control mechanism. The organocatalytic dynamic stereoselectivity is likely applicable to other small‐molecule and polymerization catalyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号