首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
For both water and heavy water adsorption and absorption on crystalline poly(vinylidene fluoride with trifluoroethylene (30%)), P(VDF-TrFE 70:30), two distinctly different adsorption sites have been identified by thermal desorption spectroscopy. One adsorbed water species resembles ice and there is also an absorbed water species that interacts more strongly with the polymer thin film, and in addition, there is a polymer surface (polymer to ice interface) water species. We find that there is H/D exchange between the water or heavy water molecules and the ferroelectric polymer (largely -(CH2-CF2)-), particularly at the polymer surface.  相似文献   

2.
The structure of thin films of the polymer hypromellose (HPMC) have been investigated under dry and ambient humidity conditions using polarised attenuated total reflectance (ATR) infrared spectroscopy. In particular spectra were recorded in the C–H and O–H stretching regions for spin coated films deposited on silicon, germanium and zinc selenide internal reflection elements (IREs). A recent development in the field of polarised ATR has demonstrated a simple quantitative relationship between complementary s- and p-polarised spectra of orientationally ordered monolayer films, which yields the spectrum uniquely in the direction perpendicular to the surface, the “z-polarised” spectrum. As well as recording s- and p-polarised spectra this work examines the z-spectra derived from the experimental s- and p-polarisation spectra. For the C–H band all three polarisation spectra reveal no change in the preferred orientation of the transition dipole between humid and dry films on germanium or silicon but with a marginally increased orientation parallel to the surface on zinc selenide. On the other hand the O–H band spectra show an increased orientation of the transition dipole parallel to the surface for both humid and dried films for all three IREs when compared to the corresponding C–H band spectra. This effect was greater in the dried film, i.e. with free water removed, than in the humid film.  相似文献   

3.
The growth of amorphous solid water (ASW) films on Pt(111) is investigated using rare gas (e.g., Kr) physisorption. Temperature programmed desorption of Kr is sensitive to the structure of thin water films and can be used to assess the growth modes of these films. At all temperatures that are experimentally accessible (20-155 K), the first layer of water wets Pt(111). Over a wide temperature range (20-120 K), ASW films wet the substrate and grow approximately layer by layer for at least the first three layers. In contrast to the ASW films, crystalline ice films do not wet the water monolayer on Pt(111). Virtually identical results were obtained for ASW films on epitaxial Pd(111) films grown on Pt(111). The desorption rates of thin ASW and crystalline ice films suggest that the relative free energies of the films are responsible for the different growth modes. However, at low temperatures, surface relaxation or "transient mobility" is primarily responsible for the relative smoothness of the films. A simple model of the surface relaxation semiquantitatively accounts for the observations.  相似文献   

4.
Adsorption has been invoked to explain many phenomena in ferroelectric materials including the unanticipated stability of ultrathin ferroelectric films; however, the intrinsic surface properties of ferroelectric oxides have been largely unexplored. Therefore, the effect of ferroelectric poling on the adsorption/desorption of two polar molecules, acetic acid and 2-propanol, and one nonpolar molecule, dodecane, on LiNbO3(0001) was compared. The two polar molecules were found to adsorb significantly more strongly on the positive surface. Temperature-programmed desorption (TPD) data yielded desorption pre-exponentials of the two polar molecules more than 11 orders of magnitude lower than expected. Ferroelectric materials are also intrinsically pyroelectric, and it is shown that the unusually low desorption pre-exponentials can be explained by temperature dependent heats of adsorption that result from changes in the surface dipole as the samples are heated. This conclusion was supported by dodecane adsorption/desorption, which was independent of polarity with normal desorption pre-exponentials. The differences between the polar and nonpolar molecules indicate that interactions between polar molecules and ferroelectric surfaces are dominated by electrostatics. It is shown that adsorption energy differences between positive and negative surfaces are large enough to switch the polarity of ferroelectric thin films.  相似文献   

5.
The MIRFTIRS method has been applied to study in-situ the growth mechanism of polyphenylene films during electrooxidation of biphenyl in methylene dichloride on platinum. When the electrode is polarized at 1.5 V vs. Ag/AgCl, a band at 1600 cm−1 is observed, indicating a quinoid structure characteristic of the bipolaron state. The band disappears at potentials of 0 or −1 V. The polymer is in a neutral state but a residual concentration of NBu4BF4 salt remains in the film matrix.An important structural difference is observed between inner layers detected by MIRFTIRS (thickness from the electrode surface <1 μm) and outer layers of films analysed by ex-situ IR spectroscopy. The inner layers are formed by short and crosslinked chains, while the outer layers consist of longer and more linear chains.The solvent and residual water adsorb reversibly on the polymer, by Lewis acid-base interactions. When the polymer is in the oxidized state, the solvent of acidic character is removed from the polymer surface while adsorption of the more basic residual water is observed. The opposite is observed when the polymer is in the neutral state: the solvent enters again into the polymer and the adsorbed water is expelled from the surface.  相似文献   

6.
Water adsorption and absorption on crystalline polyvinylidene fluoride with 30% trifluoroethylene, P(VDF-TrFE, 70:30), was examined by thermal desorption spectroscopy. Two distinctly different water adsorption sites are identified: one adsorbed species that resembles ice and another species that interacts more strongly with the polymer thin film. The existence of the latter species is consistent with X-ray diffraction studies of water absorbed into the bulk of copolymers of polyvinylidene fluoride with trifluoroethylene crystalline thin films. There are strong steric effects observed in the angle-resolved thermal desorption that may be a result of the large polymer thin film surface dipoles.  相似文献   

7.
The solvent-induced film structure of poly(n-vinyl carbazole) (PVK) thin films on indium tin oxide (ITO)-coated glass was examined. PVK thin films were prepared via spin-coating using five different solvents. We investigated the relationship between the solvent characteristics and film properties, including surface roughness and structure, film thickness, and density. The spin-coated polymer thin films are not in thermodynamic equilibrium; rather, the film properties are affected by the dynamics of the spin-coating process. We found that water present in tetrahydrofuran (THF) induces dewetting of PVK films during the spin-coating process. Solvents with a high evaporation rate lead to high surface roughness due to Marangoni convection. The results show that the surface roughness and structure of the films are dominated by the dynamics of the film formation process, rather than thermodynamic interactions between the polymer and solvents.  相似文献   

8.
The growth of crystalline ice films on Pt(111) and Pd(111) is investigated using temperature programed desorption of the water films and of rare gases adsorbed on the water films. The water monolayer wets both Pt(111) and Pd(111) at all temperatures investigated [e.g., 20-155 K for Pt(111)]. However, crystalline ice films grown at higher temperatures (e.g., T>135 K) do not wet the monolayer. Similar results are obtained for crystalline ice films of D2O and H2O. Amorphous water films, which initially wet the surface, crystallize and dewet, exposing the water monolayer when they are annealed at higher temperatures. Thinner films crystallize and dewet at lower temperatures than thicker films. For samples sputtered with energetic Xe atoms to prepare ice crystallites surrounded by bare Pt(111), subsequent annealing of the films causes water molecules to diffuse off the ice crystallites to reform the water monolayer. A simple model suggests that, for crystalline films grown at high temperatures, the ice crystallites are initially widely separated with typical distances between crystallites of approximately 14 nm or more. The experimental results are consistent with recent theory and experiments suggesting that the molecules in the water monolayer form a surface with no dangling OH bonds or lone pair electrons, giving rise to a hydrophobic water monolayer on both Pt(111) and Pd(111).  相似文献   

9.
The phenomenological vector model of water is used to clarify the nature of the percolation phase transition in hydration water films around the surface of immersed bodies, which is found in molecular dynamic calculations. The transition is explained by the emergence of ordering in the directions of projections of water dipole moments on the body surface at the lower critical temperature, i.e. by the formation of ferroelectric water film. The evaluation of this temperature is given, which is consistent with numerical calculations.  相似文献   

10.
Wang D  Chen A  Jang SH  Davies J  Jen AK 《The Analyst》2011,136(20):4179-4182
Nanostructured TiO(2)(B) thin films were found to have strong and fast chemiresistive response to nitro-aromatic and nitro-amino explosives recently. In this study, the effects of dipole moment and electron deficiency of the analyte molecules on the chemiresistive response are explored to understand the details of molecular interactions of analytes with the sensor surface which lead to charge depletion and the chemiresistive effect. It was found that the speed of the response is dominated by the polarity of the analytes and molecules with larger dipole moments produce faster responses. The degree of the response was found to be dominated by the electron deficiency of the analytes and molecules with greater electron deficiency produce stronger chemiresistive responses.  相似文献   

11.
Two different vibrational contributions to the photoemission fine structure of the ferroelectric copolymer poly(vinlylidene fluoride) with trifluoroethylene (CH2-CF2:CHF-CF2, 70%:30%) are identified. The vibrational contributions at the higher photoemission binding energies are associated with two closely placed upsilon(a,s) (CH2) stretching modes while at the smaller photoemission binding energies, the fine structure is due to a delta (CH2) bending mode. The contribution of the delta (CH2) mode to the photoemission fine structure decreases with decreasing temperature. We associate this temperature dependence to the importance of symmetry in vibronic coupling to the photoemission process and increased dipole ordering with decreasing temperature in this organic ferroelectric system.  相似文献   

12.
A method is reported for local alignment of nematic liquid crystal (NLC) molecules. It consists in the poling of small areas of ferroelectric thin films using scanning probe microscopy. A liquid crystal deposited onto such a surface is aligned via a dipole-dipole interaction. The ferroelectric films are first characterized using X ray diffraction, atomic force microscopy and ellipsometry. The domain manipulation and local poling of the film are achieved and characterized using an electrostatic microscopy type set-up. A hybrid nematic liquid crystal cell (NLC-OFC: nematic liquid crystal - oxide ferroelectric cell) is then constructed and its alignment inspected using polarizing microscopy (in reflection mode). The reorientation is explained by invoking a simple interaction between the dipole moment of the LC and the surface electric field generated by the poled area. In addition, a complimentary experiment is performed to determine the depth to which the poled area affects the liquid crystal alignment. This consists of measuring the deflection of a collimated beam (optical soliton) propagating across the poled area.  相似文献   

13.
The molecular structures of poly(vinyl alcohol) films cast from polymer aqueous solutions (1 mol/L) containing 0.1 mol/L of LiCl, NaF, NaCl, KCl, CsCl, KBr, and KI salts are studied via FTIR spectroscopy. The addition of any of these salts except LiCl leads to an increase in the degree of crystallinity of poly(vinyl alcohol) in a film by a factor of 1.3–1.6. In contrast, LiCl significantly decreases the crystallinity of the polymer. It is found that, in the IR spectra of the films containing salt additives, the position of the maximum in the band of the stretching vibrations of OH groups of the polymer is shifted relative to its position in the IR spectra of the films free of salt additives. The magnitude and direction of this band shift depend on the types (anion or cation) and radii of ions comprising salts. The observed effects are interpreted in terms of existing ideas on the interactions of salt ions with the OH groups of water and other hydroxyl-containing molecules.  相似文献   

14.
When water is adsorbed on Pt(111) above 135 K several different ice structures crystallize, depending on the thickness of the ice layer. At low coverage water forms extended islands of ice with a (square root(37) x square root(37))R25(o) unit cell, which compresses as the monolayer saturates to form a (square root(39) x square root(39))R16(o) structure. The square root(39) low-energy electron diffraction (LEED) pattern becomes more intense as the second layer grows, remaining bright for films up of 10-15 layers and then fading and disappearing for films more than ca. 40 layers thick. The ice multilayer consists of an ordered square root(39) wetting layer, on which ice grows as a crystalline film which progressively loses its registry to the wetting layer. Ice films more than ca. 50 layers thick develop a hexagonal LEED pattern, the entire film and wetting layer reorienting to form an incommensurate bulk ice. These changes are reflected in the vibrational spectra which show changes in line shape and intensity associated with the different ice structures. Thin amorphous solid water films crystallize to form the same phases observed during growth, implying that these structures are thermodynamically stable and not kinetic phases formed during growth. The change from a square root(39) registry to incommensurate bulk ice at ca. 50 layers is associated with a change in crystallization kinetics from nucleation at the Pt(111) interface in thin films to nucleation of incommensurate bulk ice in amorphous solid water films more than 50 layers thick.  相似文献   

15.
Contact angles of a homologous series of naphthalene compounds on films of a fluorinated acrylate polymer (EGC-1700) deviate from an ideal pattern of contact angles. The deviations increase with the electronegativity of the constituent atoms of the liquid molecules. The results suggest that an uneven distribution of electrostatic charges over the molecules creates strong dipole moments, giving rise to fairly strong dipole-dipole and dipole-induced dipole interactions between liquid molecules and the EGC-1700 chains, which have large dipole moments. In comparison, contact angles of the same probe liquids on the films of Teflon AF 1600, which have small dipole moments, fall on a smooth curve representing the surface tension of the polymer film.  相似文献   

16.
The optical properties of pentacene (PEN) and perfluoropentacene (PFP) thin films on various SiO(2) substrates were studied using variable angle spectroscopic ellipsometry. Structural characterization was performed using x-ray reflectivity and atomic force microscopy. A uniaxial model with the optic axis normal to the sample surface was used to analyze the ellipsometry data. A strong optical anisotropy was observed, and enabled the direction of the transition dipole of the absorption bands to be determined. Furthermore, comparison of the optical constants of PEN and PFP thin films with the absorption spectra of the monomers in solution shows significant changes due to the crystalline environment. Relative to the monomer spectrum, the highest occupied molecular orbital to lowest unoccupied molecular orbital transition observed in PEN (PFP) thin film is reduced by 210 meV (280 meV). A second absorption band in the PFP thin film shows a slight blueshift (40 meV) compared to the spectrum of the monomer with its transition dipole perpendicular to that of the first absorption band.  相似文献   

17.
Polymer thin films with patterned ferroelectric domains are attractive for a broad range of applications, including the fabrication of tactile sensors, infrared detectors, and non‐volatile memories. Herein, we report the use of gold nanocages (AuNCs) as plasmonic nanostructures to induce a ferroelectric–paraelectric phase transition in a poly(vinylidene fluoride) (PVDF) thin film by leveraging its photothermal effect. This technique allows us to generate patterned domains of ferroelectric PVDF within just a few seconds. The incorporation of AuNCs significantly enhances the pyroelectric response of the ferroelectric film under near‐infrared irradiation. We also demonstrate the use of such patterned ferroelectric films for near‐infrared sensing/imaging.  相似文献   

18.
The photochemical growth of silver nanoparticles on the negative domains of lead zirconate titanate thin films is reported. A sample of highly [100] orientated lead zirconate titanate, with a ratio of 30:70, that was 65-70 nm thick grown on Pt-coated MgO was poled by use of piezoresponse force microscopy to produce defined regions of surface positive and negative polarization. A comparison between the growth of silver nanoparticles on the surface of the lead zirconate titanate when illuminated with two sources of super band gap UV is given. In both cases the wavelength of illumination leads to growth on the positive domains but only illumination with a Honle H lamp, with a high photon output over 250-200 nm, caused significant growth of silver nanoparticles on the negative domain. The deposition on the negative domain is explained in terms of changed band bending due to the excitation of electrons into the conduction band, the rate of decay to the ground state, and dimensions of the ferroelectric film. The rate of deposition of silver nanoparticles on the negative domains is approximately half that on the positive domains.  相似文献   

19.
Narrow band gaps and excellent ferroelectricity are intrinsically paradoxical in ferroelectrics as the leakage current caused by an increase in the number of thermally excited carriers will lead to a deterioration of ferroelectricity. A new molecular ferroelectric, hexane‐1,6‐diammonium pentaiodobismuth (HDA‐BiI5), was now developed through band gap engineering of organic–inorganic hybrid materials. It features an intrinsic band gap of 1.89 eV, and thus represents the first molecular ferroelectric with a band gap of less than 2.0 eV. Simultaneously, low‐temperature solution processing was successfully applied to fabricate high‐quality ferroelectric thin films based on HDA‐BiI5, for which high‐precision controllable domain flips were realized. Owing to its narrow band gap and excellent ferroelectricity, HDA‐BiI5 can be considered as a milestone in the exploitation of molecular ferroelectrics, with promising applications in high‐density data storage and photovoltaic conversion.  相似文献   

20.
We have examined the elementary molecular processes responsible for proton transfer and HD exchange in thin ice films for the temperature range of 100-140 K. The ice films are made to have a structure of a bottom D(2)O layer and an upper H(2)O layer, with excess protons generated from HCl ionization trapped at the D(2)OH(2)O interface. The transport behavior of excess protons from the interfacial layer to the ice film surface and the progress of the HD exchange reaction in water molecules are examined with the techniques of low energy sputtering and Cs(+) reactive ion scattering. Three major processes are identified: the proton hopping relay, the hop-and-turn process, and molecular diffusion. The proton hopping relay can occur even at low temperatures (<120 K), and it transports a specific portion of embedded protons to the surface. The hop-and-turn mechanism, which involves the coupling of proton hopping and molecule reorientation, increases the proton transfer rate and causes the HD exchange of water molecules. The hop-and-turn mechanism is activated at temperatures above 125 K in the surface region. Diffusional mixing of H(2)O and D(2)O molecules additionally contributes to the HD exchange reaction at temperatures above 130 K. The hop-and-turn and molecular diffusion processes are activated at higher temperatures in the deeper region of ice films. The relative speeds of these processes are in the following order: hopping relay>hop and turn>molecule diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号