首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 83 毫秒
1.
Summary. Mono- and homobinuclear complexes of Mn(II), Co(II), Ni(II), and Cu(II) with phthalein purple are prepared and characterized by elemental analysis, thermal studies (TGA and DTA), spectral methods (IR, UV/Vis, and ESR), magnetic moment determination, and electrochemical reduction (DC polarography at DME and CV at HMDE). Thermal degradation of the complexes was studied by TGA and DTA where some thermodynamic parameters were determined. The mode of bonding and geometry of the complexes were determined from the spectral studies. Magnetic moment values showed some antiferromagnetism in the homobinuclear complexes. The reduction of the metal ions proceeds to the metallic state along an irreversible process.  相似文献   

2.
Complexes of Co(II), Ni(II), Cu(II), and Mn(II) containing Schiff base NOS donor ligands have been synthesised via chemical and electrochemical techniques. The structure of the complexes has been elucidated by elemental analysis, conductance, magnetic susceptibility measurements, IR, ESR, electronic spectral studies and thermal techniques (TGA and DTA). The electrochemical behaviour of the metal complexes was studied using DC polarography and cyclic voltammetry. Antimicrobial activity of the title Schiff base and its complexes has been tested against different microorganisms.  相似文献   

3.
Summary. Complexes of Co(II), Ni(II), Cu(II), and Mn(II) containing Schiff base NOS donor ligands have been synthesised via chemical and electrochemical techniques. The structure of the complexes has been elucidated by elemental analysis, conductance, magnetic susceptibility measurements, IR, ESR, electronic spectral studies and thermal techniques (TGA and DTA). The electrochemical behaviour of the metal complexes was studied using DC polarography and cyclic voltammetry. Antimicrobial activity of the title Schiff base and its complexes has been tested against different microorganisms.  相似文献   

4.
The electronic absorption spectra of 1-(4,6-dimethyl-pyrimidin-2-ylazo)-naphthalen-2-ol is studied in organic solvents of different polarity as well as in buffer solutions of varying pH values at different temperatures and different ratios of methanol. The probable structure of the azodye has been assigned on the basis of spectral studies (IR and (1)H NMR). The effect of Co(II), Ni(II) and Cu(II) ions on the emission spectrum of the free azodye is also assigned. The stoichiometry of the metal complexes is determined spectrophotometrically and conductometrically. Novel complexes of Co(II), Ni(II) and Cu(II) with the pyrimidine azodye have been synthesized and characterized on the basis of elemental analyses, molar conductance, magnetic susceptibility measurements, IR, electronic as well as ESR spectral studies The thermal decomposition of the metal complexes is studied by TGA and DTA techniques. The kinetic parameters like activation energy, pre-exponential factor and entropy of activation are estimated.  相似文献   

5.
X-band electron spin resonance (ESR) and UV-vis spectra of a homobinuclear [(Bipy)2Cu-E-Im-Cu(Bipy)2](BF4)3 and a heterobinuclear [(Bipy)2Cu-E-Im-Zn(Bipy)2](BF4)3 complexes, E-Im=2-ethylimidazolate ion have been described as possible models for superoxide dismutase (SOD). Magnetic moment and ESR spectral measurements of the homobinuclear complex have shown an antiferromagnetic exchange interaction. From pH-dependent ESR and UV-vis spectral measurements studies, these complexes have been found to be stable over 8.5-10.5 pH range. These complexes catalyze the dismutation of superoxide (O2-) at biological pH. All the observations indicate that these complexes act as good possible models for superoxide dismutase.  相似文献   

6.
Complexes of the type [M(painh)(H2O)2X], where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); X = Cl2 or SO4; painh = p-amino acetophenone isonicotinoyl hydrazone, have been synthesized and characterized by spectral and other physico-chemical techniques. The synthesized complexes are stable powders, insoluble in common organic solvents such as ethanol, benzene, carbon tetrachloride, chloroform and diethyl ether, and are non-electrolytes. Thermogravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) studies show that the organic ligand decomposes exothermically through various steps. TGA and Infrared (IR) spectral studies indicate the presence of coordinated water in the metal complexes. Magnetic susceptibility measurements and electronic spectra suggest that Mn(II), Co(II), and Ni(II) complexes are paramagnetic with octahedral geometry, whereas Cu(II) complexes have distorted octahedral geometry. The neutral bidentate ligand bonds through >C=O and >C=N–groups in all the complexes. Electron Spin Resonance (ESR) spectra in the solid state show axial symmetry for [Cu(painh)(H2O)2(SO4)] and elongated rhombic symmetry for [Cu(painh)(H2O)2Cl2], suggesting an elongated tetragonally-distorted octahedral structure for both complexes. X-ray powder diffraction parameters for two complexes correspond to tetragonal and orthorhombic crystal lattices. The metal complexes show fair antifungal activity against Rizoctonia sp., Aspergillus sp., Stemphylium sp., and Penicillium sp. and appreciable antibacterial activity against Pseudomonas sp. and Escherichia coli.  相似文献   

7.
《Journal of Coordination Chemistry》2012,65(17-18):1611-1619
Two new series of mononuclear and homobinuclear Co(II), Ni(II) and Cu(II) complexes with mono- and bis-azo compounds derived from 2,7-dihydroxynaphthalene and anthranilic acid or o-aminophenol are prepared and characterized by elemental and thermal analyses, conductance, IR, electronic, ESR spectra and magnetic moment measurements. The ligand field splitting parameters and Racah constant are calculated. The spectral and magnetic results obtained are utilized to determine the geometries around the metal(II) ion. The geometry of the complex formed depends on the structure of the ligand and the type of metal(II) ion. The mode of bonding of the ligand with the metal ions is deduced from IR spectra.  相似文献   

8.
In this study, Seven new complexes incorporating (E)-2-(((5-([2-hydroxyphenoxy]methyl)furan-2-yl)methylene)amino)phenol derived from 2-hydroxyphenoxymethylfuran-5-carbaldehyde and 2-aminophenol have been synthesized using Cu(II), Cr(III), Fe(III), Ni(II), Co(II), Zn(II), and Pt(IV) metal salts. Thermal measurements, molar conductance, magnetic moment, elemental analyses, spectral (IR, UV–Vis, 1H nuclear magnetic resonance (NMR), ESR, Mass), were used to characterize insulated solid complexes. The thermogravimetry (TG) and differential thermoanalysis (DTA) of the complexes were carried out in the range of 30–900°C. Magnetic susceptibility and electronic spectral data, as well as quantum chemical calculations, reveal the square planar geometry for Ni (II) complex, square planar/octahedral geometry for Cu (II) complex, while Co(II), Zn(II), Cr(III), Fe(III), and Pt (IV) complexes are octahedral geometry. Density functional theory (DFT) studies revealed that geometries of metal complexes and Schiff base were entirely optimized in relation to use energy by 6–31 + g (d,p) basis set. The complexes show a well-defined crystal system indicated by a powder-X-ray diffraction pattern. The scanning electron microscope showed complexes were nanocrystalline in nature, in addition to the interaction of the complexes with calf thymus CT-DNA, which was investigated via the UV–visible absorption method. Therefore, the DNA cleavage activity by the H2L ligand and its metal complexes was performed. Finally, the synthesized complexes were tested for their in-vitro antimicrobial efficacy.  相似文献   

9.
4-(1H-Pyrazolo (3,4-d) pyrimidin-4-ylazo) benzene-1,3-diol was synthesized and characterized by various spectral and analytical techniques. Semiempirical quantum calculations using the AM1 method have been performed in order to evaluate the geometry and electronic structure of the title azodye in the ground state. The complex formation between Co(II), Ni(II) and Cu(II) ions and the title azodye was studied conductometrically and spectrophotometrically. The spectrophotometric determination of the title metal ions and titration using EDTA are reported. Co(II), Ni(II) and Cu(II) complexes of the title azodye have been synthesized and characterized by elemental analysis, conductivity, magnetic susceptibility, IR, UV-Vis and thermal analysis (TGA and DTA).The spectral and magnetic data suggested the octahedral geometry for Co(II) and Ni(II) complexes while Cu(II) complexes have square planar geometry. The thermal studies confirmed the chemical formulations of the title complexes. The thermal degradation takes place in two or three steps depending on the type of the metal and the geometry of the complexes. The kinetics of the decomposition was examined by using Coats-Redfern relation. The activation energies and other activation parameters (DeltaH, DeltaS and DeltaG) were computed and related to the bonding and stereochemistry of the complexes.  相似文献   

10.
Complexes of the type [M(pash)Cl] and [M(Hpash)(H2O)SO4] (M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); Hpash = p-amino acetophenone salicyloyl hydrazone) have been synthesized and characterized by elemental analyses, molar electrical conductance, magnetic moments, electronic, ESR and IR spectra, thermal studies and X-ray powder diffraction. All the complexes are insoluble in common organic solvents and are non-electrolytes. The magnetic moment values and electronic spectra indicate a square-planar geometry for Co(II), Ni(II) and Cu(II) chloride complexes and spin-free octahedral geometry for the sulfato complexes. The ligand coordinates through >C=N–,–NH2 and a deprotonated enolate group in all the chloro complexes, and through >C=N–, >C=O and–NH2 in the sulfato complexes. Thermal analyses (TGA and DTA) of [Cu(pash)Cl] show a multi-step exothermic decomposition pattern. ESR spectral parameters of Cu(II) complexes in solid state at room temperature suggest the presence of the unpaired electron in d x 2 ? y 2 . X-ray powder diffraction parameters for [Cu(pash)Cl] and [Ni(Hpash)(H2O)SO4] correspond to tetragonal and orthorhombic crystal lattices, respectively. The complexes show a fair degree of antifungal activity against Aspergillus sp., Stemphylium sp. and Trichoderma sp. and moderate antibacterial activity against E. coli and Clostridium sp.  相似文献   

11.
Ammonium[N(o-chlorophenyl)dithiocarbamate], NH4(OCD), ammonium [N(m-chlorophenyl)dithiocarbamate], NH4(MCD) and ammonium [N(p-chlorophenyl)dithiocarbamate], NH4(PCD) and their complexes with Cu(II), Zn(II), Cd(II) and Sn(II) have been synthesised. These complexes have been characterised on the basis of chemical analyses, molecular weight determinations, conductance measurements, electronic and IR spectral studies. Thermal behaviour of the compounds has been studied with the aid of TG and DTA techniques in static air atmosphere. Heats of reaction for different decomposition steps have been calculated from the DTA curves. The end products obtained after thermal decomposition of the complexes were identified by elemental analyses and IR spectral data.  相似文献   

12.
A series of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of azo-compounds containing hydroxyl quinoline moiety have been synthesized and characterized by elemental analysis, molar conductance, magnetic moments, IR, electronic and ESR spectral studies. The results revealed the formation of 1:1 and 1:2 (L:M) complexes. The molar conductance data reveal that the chelates are nonelectrolyte. IR spectra indicate that the azodyes behave as monobasic bidentate or dibasic tetradentate ligands through phenolate or carboxy oxygen, azo N for 1:1 (L:M) complexes beside phenolate oxygen and quinoline N atoms for 1:2 (L:M) complexes. The thermal analyses (TG and DTA) as well as the solid electrical conductivity measurements are also studied. The molecular parameters of the ligands and their metal complexes have been calculated.  相似文献   

13.
Complexes of Mn(II), Co(II), Ni(II), Pd(II) and Pt(II) were synthesized with the macrocyclic ligand, i.e., 2,3,9,10-tetraketo-1,4,8,11-tetraazacycoletradecane. The ligand was prepared by the [2 + 2] condensation of diethyloxalate and 1,3-diamino propane and characterized by elemental analysis, mass, IR and 1H NMR spectral studies. All the complexes were characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, IR, electronic and electron paramagnetic resonance spectral studies. The molar conductance measurements of Mn(II), Co(II) and Ni(II) complexes in DMF correspond to non electrolyte nature, whereas Pd(II) and Pt(II) complexes are 1:2 electrolyte. On the basis of spectral studies an octahedral geometry has been assigned for Mn(II), Co(II) and Ni(II) complexes, whereas square planar geometry assigned for Pd(II) and Pt(II). In vitro the ligand and its metal complexes were evaluated against plant pathogenic fungi (Fusarium odum, Aspergillus niger and Rhizoctonia bataticola) and some compounds found to be more active as commercially available fungicide like Chlorothalonil.  相似文献   

14.
Complexes of cobalt(II), nickel(II), copper(II) and zinc(II) with a new tetraaza macrocyclic ligand have been synthesized and characterized by microanalyses, molar conductance, magnetic susceptibility, mass, thermogravimetric (TGA), IR, 1H and 13C NMR, electronic and ESR spectral studies. All the complexes are found to have the formula [MLX2]x nH2O and are six-coordinated with distorted octahedral geometry.  相似文献   

15.
Co(II), Ni(II) and Cu(II) complexes were synthesized with thiosemicarbazone (L(1)) and semicarbazone (L(2)) derived from 2-acetyl furan. These complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, electronic and EPR spectral studies. The molar conductance measurement of the complexes in DMSO corresponds to non-electrolytic nature. All the complexes are of high-spin type. On the basis of different spectral studies six coordinated geometry may be assigned for all the complexes except Co(L)(2)(SO(4)) and Cu(L)(2)(SO(4)) [where L=L(1) and L(2)] which are of five coordinated square pyramidal geometry.  相似文献   

16.
Abstract

Monobasic tridentate Schiff base ligand having ONS donor sequence was prepared by condensing N-aminopyrimidine-2-thione with o-vanillin. The complexes were formed by reacting ligand and the metal acetates of Cu(II), Ni(II), Co(II), Mn(II), and Cd(II) in methanol to get a series of mononuclear and dinuclear complexes. The characterization of ligand and metal complexes were carried out by elemental analyses, conductivity measurements, magnetic susceptibility data, FTIR, UV-vis, NMR, and API-ES mass spectral data. The structure of the complexes was confirmed on the basis of elemental analyses, magnetic susceptibility, API-ES mass spectral data and thermal gravitational analysis (TGA).

GRAPHICAL ABSTRACT   相似文献   

17.
Cobalt (II), nickel (II), copper (II) and manganese (II) complexes of dihydrazone derived from the condensation of oxaloyldihydrazide with 2-hydroxybenzaldehyde have been synthesized. The dihydrazone ligand/chelates were characterized on the basis of their elemental analyses, spectral (UV–Vis., FT-IR, mass, 1H NMR), magnetism, thermal (TGA) measurements and structures of the compounds have been established. The surface morphology of the desired complexes was studied by SEM. The ligand is coordinated to the Ni(II), Co(II), Mn(II) and Cu(II) centers in bi, tetra, penta and hexadentate way giving mono-nuclear complexes except in case of manganese and copper the bi-nuclear complexes were formed. The nickel complex has tetrahedral geometry while the other complexes are suggested to have octahedral configurations. The prepared samples have been assayed for their electrical activities. The electrical activity (DC and AC conductivity) for ligand and its metal complexes has been examined at different frequencies (1, 10, 100 kHz) in the temperature ranges 303–573 and 300–625 K, respectively. The DC and AC conductivity are viewed as thermally activated process at higher temperatures and a marked increment was seen in case of Mn(II) complex. The dielectric permittivity was determined in the temperature area of 300–625 K and diminished with augmentation of frequency proposing a typical behavior of dielectrics.  相似文献   

18.
The synthesis, characterization and diuretic activity of four new biologically active complexes of Mg(II) and VO(II) with bidentate Schiff base ligand acetazolamide–salicylaldimine (L) obtained from the inserted condensation of 5-acetamido-1,3,4-thiadiazole-2-sulphonamide (acetazolamide) with salicylaldehyde in a 1:1 molar ratio have been reported. Using this bidentate ligand complexes of Mg(II), Mn(II), Fe(II) and VO(II) with general formula ML2 have been synthesized. The synthesized complexes were characterized by several techniques using elemental analysis, FT-IR, electronic spectra, TGA, mass, particle size analysis and molar conductance measurements. The elemental analysis data suggest the stoichiometry to be 1:2 [M:L]. The molar conductance measurements suggest non-electrolytic nature of the complexes. Infrared spectral data agreed with the coordination to the central metal ion through deprotonated phenolic oxygen and azomethine nitrogen atoms. On the basis of spectral studies, octahedral geometry is suggested for Mg(II), Mn(II), Fe(II) and square pyramidal geometry is suggested for VO(II) complexes. The pure drug, synthesized ligand and metal(II) complexes were screened for their antimicrobial activities against Eschericia coli, Bacillus subtilis, Aspergillus niger and Aspergillus flavous. The results show that the metal complexes were more active than the ligand and pure drug against these microbial species as expected. The ligand and its Mg(II) complexes was screened for their diuretic activity also.  相似文献   

19.
The potassium salt of salicylidene-DL-alanine (KHL), bis(benzylidene)ethylenediamine (A1), thiophene-o-carboxaldene-p-toluidine (A2), and its metal complexes of the formula [(MII(L)(A)(H2O)] (M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II); A = A1 or A2) are prepared. They are characterized by elemental analysis, magnetic susceptibility measurements, thermogravimetric analysis, and infrared and electronic spectral studies. The electronic spectral and magnetic moment data suggest an octahedral geometry for the complexes. All of these complexes, metal nitrates, fungicides (bavistin and emcarb), and ligands are screened for their antifungal activity against Aspergillus niger, Fusarium oxysporum, and Aspergillus flavus using a plate poison technique. The complexes show higher activity than those of the free ligands, metal nitrate, and the control (DMSO) and moderate activity against bavistin and emcarb. The text was submitted by the authors in English.  相似文献   

20.
Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) complexes with the ligand 2-tert-butylaminomethylpyridine-6-carboxylic acid methylester (HL(2)) have been prepared and characterized by elemental analyses, molar conductance, magnetic moment, thermal analysis and spectral data. 1:1 M:HL(2) complexes, with the general formula [M(HL(2))X(2)].nH(2)O (where M = Co(II) (X = Cl, n = 0), Ni(II) (X = Cl, n = 3), Cu(II) (grey colour, X = AcO, n = 1), Cu(II) (yellow colour, X = Cl, n = 0) and Zn(II) (X = Br, n = 0). In addition, the Fe(III) and UO(2)(II) complexes of the type 1:2 M:HL(2) and with the formulae [Fe(L(2))(2)]Cl and [UO(2)(HL(2))(2)](NO(3))(2) are prepared. From the IR data, it is seen that HL(2) ligand behaves as a terdentate ligand coordinated to the metal ions via the pyridyl N, carboxylate O and protonated NH group; except the Fe(III) complex, it coordinates via the deprotonated NH group. This is supported by the molar conductance data, which show that all the complexes are non-electrolytes, while the Fe(III) and UO(2)(II) complexes are 1:1 electrolytes. IR and H1-NMR spectral studies suggest a similar behaviour of the Zn(II) complex in solid and solution states. From the solid reflectance spectral data and magnetic moment measurements, the complexes have a trigonal bipyramidal (Co(II), Ni(II), Cu(II) and Zn(II) complexes) and octahedral (Fe(III), UO(2)(II) complexes) geometrical structures. The thermal behaviour of the complexes is studied and the different dynamic parameters are calculated applying Coats-Redfern equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号