首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Bare TiO2 and Cu-doped TiO2 nanoparticles with different nominal doping amounts of Cu ranging from of 0.5 to 5.0 mol% were synthesized using the modified sol–gel method. The samples were physically characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller-specific surface area, UV–Vis diffuse reflectance spectroscopy, zeta potential, X-ray photoelectron spectroscopy, inductively coupled plasma, and photoluminescence techniques. The Cu-doped TiO2 exhibited good photocatalytic activity in mineralization of oxalic acid and formic acid under visible light irradiation. Photomineralization of oxalic and formic acids under visible light irradiation revealed greatly enhanced photoactivity exhibited by the 2.0 mol% Cu-doped TiO2 photocatalyst compared to bare TiO2 . The enhanced photocatalytic performance arises from copper ion doping in the TiO2 structure, leading to an extended photoresponsive range, enhanced photogenerated charge separation, and transportation efficiency.  相似文献   

2.
ZnFe2O4 nanoparticles sensitized by C-modified TiO2 hybrids (ZnFe2O4–TiO2/C) were successfully prepared by a feasible method. The ZnFe2O4 nanoparticles were prepared by mechanical alloying and annealing. The residual organic compounds in the synthetic process of TiO2 were selected as the carbon source. The as-prepared composites were characterized by X-ray diffraction, Raman spectroscopy, X-ray fluorescence, transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet–visible light diffuse reflectance spectroscopy (UV–Vis) and N2 adsorption–desorption analysis. The photocatalytic activity of the photocatalysts was measured by degradation of methyl orange under ultraviolet (UV) light and simulated solar irradiation, respectively. The results show that the carbon did not enter the TiO2 lattice but adhered to the surface of TiO2. The photocatalytic activity of the as-prepared C-modified TiO2 (TiO2/C) improved both under UV and simulated solar light irradiation, but the improvement was not dramatic. Introduction of ZnFe2O4 into the TiO2/C could enhance the absorption spectrum range. The ZnFe2O4–TiO2/C hybrids exhibited a higher photocatalytic activity both than that of the pure TiO2 and TiO2/C under either UV or simulated solar light irradiation. The complex synergistic effect plays an important role in improving the photocatalytic performance of ZnFe2O4–TiO2/C composites. The optimum photocatalytic performance was obtained from the ZnFe2O4(0.8 wt%)–TiO2/C sample.  相似文献   

3.
Charge separation plays a key role in the conversion of solar energy into chemical energy for use in the redox reaction and as well as in the photocatalytic activity. In this study, SrTiO3 particles with different morphologies including irregular, tetrahexahedron, and cube were synthesized by an in situ solvothermal method. The photocatalytic activity of the synthesized nanoparticles was investigated in the photocatalytic decomposition of methylene blue under UV light irradiation. Tetrahexahedron SrTiO3 particles exhibited high decomposition activity (70 %), which is about two times higher than those of the irregular and cubic SrTiO3 particles. The high decomposition activity of tetrahexahedron SrTiO3 particles could be attributed to the improvement of charge separation achieved on different crystal facets. To reach a good charge separation, tetrahexahedron SrTiO3/TiO2 coupled nanoparticles were fabricated by impregnation method. Results showed that coupling tetrahexahedron SrTiO3 with TiO2 could produce efficient charge separation between tetrahexahedron SrTiO3 and TiO2 due to their matched band edges. In order to achieve better charge separation, the tetrahexahedron SrTiO3/90 %TiO2 sample was calcined at different temperatures in the 450–750 °C range. Tetrahexahedron SrTiO3/90 %TiO2 coupled nanoparticles calcined at 650 °C show high photocatalytic activity compared with other samples. The prepared samples were characterized by using various techniques such as X-ray diffraction, scanning electron microscopy, photoluminescence emission spectra, and UV–Vis diffuse reflectance spectroscopy.  相似文献   

4.
We proposed here a new process coupling dielectric barrier discharge (DBD) plasma with magnetic photocatalytic material nanoparticles for improving yield in DBD degradation of methyl orange (MO). TiO2 doped Fe3O4 (TiO2/Fe3O4) was prepared by the sol-gel method and used as a new type of magnetic photocatalyst in DBD system. It was found that the introduction of TiO2/Fe3O4 in DBD system could effectively make use of the energy generated in DBD process and improve hydroxyl radical contributed by the main surface Fenton reaction, photocatalytic reaction and catalytic decomposition of dissolved ozone. Most part of MO (88%) was degraded during 30 min at peak voltage of 13 kV and TiO2/Fe3O4 load of 100 mg/L, with a rate constant of 0.0731 min?1 and a degradation yield of 7.23 g/(kW h). The coupled system showed higher degradation efficiency for MO removal.  相似文献   

5.
A plasma-assisted synthesis of TiO2/SnO2 nanocomposite is described. In this approach, a precursor containing a mixture of [TiCl3 and SnCl2] exposed to electric discharge was oxidized by plasma-generated reactive species (HO·/H2O = 2.85 eV/SHE). SnO2 microstructures with a diameter of 10–40 µm were coated by thin layers TiO2 nanorods with mean diameter of 6–8 nm. The obtained TiO2/SnO2 nanocomposite was characterized by transmission and scanning electron microscopy, X-ray diffraction and Fourier transform infrared. TiO2/SnO2 nanocomposite was found to be a promising new material for the photocatalytic discoloration of aqueous Remazol Brilliant Blue-R dye under daylight and UVA light sources, due to the combined effects of large specific surface area and heterojunction which efficiently separates the electron–hole pairs delaying the charge recombination. The leaching test indicated that the nanocomposite is stable easily reusable.  相似文献   

6.
Porous platinum ion-doped TiO2 (Pt–TiO2) was prepared by a sol–gel method and demonstrated to have superior photocatalytic activity for the photodegradation of gaseous trichloroethylene (TCE) under visible light (VL) irradiation from a xenon lamp equipped with 422-nm cut-off filter. Kinetic studies were performed to clarify the effect of the doping amounts, space times, VL intensity, and mole fractions of TCE, O2, and H2O on the degradation of TCE. Under ultraviolet (UV) irradiation, the photocatalytic activity of Pt–TiO2 was the same as that of TiO2, indicating that the doped Pt ion did not act as a recombination center for the photogenerated holes and electrons. Based on the kinetic data and reaction products, we conclude that the photocatalytic degradation of TCE on Pt–TiO2 under VL irradiation proceeds similarly to TiO2 under UV irradiation. We also performed the photocatalytic degradation of TCE at the space time of 7.5 × 107 g s mol?1 in a tubular reactor packed with the Pt–TiO2 pellets which are more suitable than the Pt–TiO2 powder for the practical remediation of the contaminated gas. TCE was completely degraded, i.e. 100% conversion was achieved under VL irradiation but only a small quantity of CO2 was formed with the stoichiometric ratio of [CO2]formed/[TCE]degraded of ca. 0.33. By switching the gas stream containing TCE to humid air, more CO2 was formed, indicating that the dichloroacetates accumulated on the Pt–TiO2 surface are photodegradable to CO2 under VL irradiation.  相似文献   

7.
The structural properties of Au/TiO2 catalyst were studied by X-ray diffraction, UV-visible diffuse reflectance, photoluminescene, scanning transmission and electron microscope, and temperature programmed reduction. The photocatalytic activity of the catalysts was evaluated for the degradation of various azo-dyes such as methylene blue, methyl orange, reactive blue-4, and eosin-B under solar irradiation. It was found that TiO2 catalyst modified with gold exhibits higher percentage of degradation compared to starting TiO2. For example, TiO2 showed 35% of methyl orange degradation whereas gold modified TiO2 possessed 82%. Effect of different parameters such as pH and dye concentration has been evaluated and the photocatalytic activity was correlated with physico-chemical properties. The dye degradation rate followed first order kinetics.  相似文献   

8.
Titania thin films were synthesized by sol–gel dip-coating method with metallic Ni nanoparticles synthesized separately from an organometallic precursor Ni(COD)2 (COD = cycloocta-1,5-diene) in presence of 1,3-diaminopropane as a stabilizer. Titania was obtained from a titanium isopropoxide precursor solution in presence of acetic acid. A Ni/TiO2 sol system was used to coat glass substrate spheres (6, 4 and 3 mm diameter sizes), and further heat treatment at 400 °C was carried out to promote the crystallization of titania. XRD analysis of the TiO2 films revealed the crystallization of the anatase phase. Transmission Electron Microscopy (TEM) and High Resolution TEM studies of Ni nanoparticles before mixing with the TiO2 solution revealed the formation of Ni nanostructures with an average size of 5–10 nm. High-angle annular dark-field images of the Ni/TiO2 system revealed well-dispersed Ni nanoparticles supported on TiO2 and confirmed by AFM analysis. The photocatalytic activity of the Ni/TiO2 films was evaluated in hydrogen evolution from the decomposition of ethanol using a mercury lamp for UV light irradiation. Titania films in presence of Ni nanoparticles show higher efficiency in their photocatalytic properties in comparison with TiO2.  相似文献   

9.
In the present study, titanium dioxide (TiO2) nano-particles were synthesized by sol–gel technique and then used to provide nano-TiO2 loaded cement samples at 1, 5, and 10 wt% for investigation of Malachite green pigment decomposition and Escherichia coli inactivation under UV irradiation. Surveys conducted on the synthesized TiO2 nano-particles showed a 100 % anatase phase with a mean particle size of 66.5 nm, surface area of 64.352 m2 g?1, and a porosity volume of 0.1278 cm3 g?1. Cement samples containing this catalyst exhibited stronger photocatalytic properties as compared to the same amount of pure catalyst. Considering both photocatalytic performance and cost of catalyst, 5 wt% titanium dioxide was suggested to be added to cement. By addition of 1 wt% polycarboxylic copolymer as super-plasticizer to the cement paste, the photocatalytic sample activities were reinforced so that a similar performance could be obtained at 1 wt% catalyst as compared to 5 wt% catalyst without super-plasticizer.  相似文献   

10.
Nanocrystalline TiO2 powders in the anatase, rutile, and mixed phases prepared by hydrolysis of TiCl4 solution were of ultrafine size (<7.2 nm) with high specific surface areas in the range 167 to 388 m2/g. In the photocatalytic degradation of phenol as model reaction, the photocatalytic properties of TiO2 nanoparticles were evaluated by use of UV–vis absorption spectroscopy and total organic carbon (TOC) content. The synthetic mixed-phase TiO2 powder calcined at 400 °C had higher activity than pure anatase or rutile; it degraded more than 90% phenol to CO2 (evaluated by TOC) after irradiation with near UV light for 90 min at a catalyst loading of 0.4 g/L. The TOC results indicated that rutile TiO2 crystallites of particle size 7.2 nm resulted in much better photocatalytic performance than particles of larger size. This result suggested that some intermediates, not determined by UV–vis absorption spectroscopy, existed in the solution after the photocatalytic process over the rutile TiO2 photocatalysts of larger crystallite size.  相似文献   

11.
In this work, TiO2 and doped TiO2 photocatalysts (Fe/TiO2 and Cu/TiO2) were synthesized by the sol–gel method. The main objective of this study was to investigate the influence of dopants on the structure, morphology, and activity of the catalysts in powder and immobilized states. XRF, XRD, and SEM methods were used to characterize the catalysts. The structure and phase distribution of the nanocrystalline powders were identified by XRD. Nanoparticles crystallite size and the degree of crystallinity were affected by doping. The anatase contents of catalysts were achieved as follows: TiO2 (5.89 %) < Fe/TiO2 (42.17 %) < Cu/TiO2 (70.28 %). It was indicated that the activity of the catalysts strongly depends on the anatase content. Under the same circumstances, copper-modified TiO2 exhibited a twofold higher photocatalytic activity compared with TiO2. The nanostructured catalysts were immobilized on light expanded clay aggregate (LECA) granules in order to investigate the effect of a novel support on the activity of the catalysts. Morphological changes are recognizable in the SEM images. Activity tests indicated that the best catalytic performance was assigned to Cu/TiO2/LECA. After 120 min of irradiation, 61 % degradation of phenol in synthetic wastewater was achieved. The high photocatalytic activity of Cu/TiO2/LECA confirms that LECA is as an excellent support.  相似文献   

12.
NiS/TiO2 nano-sheet films (NiS/TiO2 NSFs) photocatalysts were prepared by loading NiS nanoparticles as noble metal-free cocatalysts on the surface of TiO2 films through a solvothermal method. The prepared samples were characterized by XRD, SEM, EDS, UV–Vis absorption spectra and XPS analysis. The photocatalytic H2 evolution and photoluminescence spectroscopy (PL) experiments indicated that the NiS cocatalysts could efficiently promote the separation of photogenerated charge carriers in TiO2 and consequently enhance the H2 evolution activity. The hydrogen yield obtained from the optimal sample reached 4.31 μmol cm–2 at 3.0 h and the corresponding energy efficiency was about 0.26%, which was 21 times higher than that of pure TiO2 NSF. A possible photocatalytic mechanism of NiS cocatalyst on the improvement of the photocatalytic performance of TiO2 NSF was also proposed.  相似文献   

13.
SiO2/TiO2 hybrid nanofibers were prepared by electrospinning and applied for photocatalytic degradation of methylene blue (MB). The phase structure, specific surface area, and surface morphologies of the SiO2/TiO2 hybrid nanofibers were characterized through thermogravimetry (TG), X-ray diffraction (XRD) analysis, Brunauer–Emmett–Teller (BET) analysis, scanning electron microscopy (SEM), etc. XRD measurements indicated that doping of silica into TiO2 nanofibers can delay the phase transition from anatase to rutile and decrease the grain size. SEM and BET characterization proved that silica doping can remarkably enhance the porosity of the SiO2/TiO2 hybrid nanofibers. The MB adsorption capacity and photocatalytic activity of the SiO2/TiO2 hybrid nanofibers were distinguished experimentally. It was found that, although increased silica doping content could enhance the MB adsorption capacity, the intrinsic photocatalytic activity gradually dropped. The SiO2 (10 %)/TiO2 composite nanofibers exhibited the highest MB degradation rate, being superior to SiO2 (20 %)/TiO2 or pure TiO2.  相似文献   

14.
Microcomposites consisting of TiO2 (or Ce-doped TiO2) and ThO2 (0.5–2% of the TiO2 mass) are produced by sol-gel synthesis of TiO2 in presence of ThO2. X-ray diffraction study reveals the effects of ThO2 (compared to the ThO2-free TiO2, obtained by the same method) on the anatase interplanar distances, crystallites size and phase composition. The photocatalytic tests in presence of the composites under UV irradiation reveal an increase of the Malachite Green degradation rate constant. The effect depends on the Th relative content, temperature of annealing of the catalyst and addition of other doping agent. The highest photocatalytic activity is observed for TiO2 obtained at 550°C and containing 1% ThO2. The composite exhibits activity in dark, also. The presence of Ce4+ ions is not an obligatory requirement for the realization of the ThO2 effect. The reported results suggest that the radioactivity of the Th and/or its decay products is one of the main factors responsible for the increased photocatalytic activity of TiO2.   相似文献   

15.
Cobalt doped titania nanoparticles were synthesized by sol-gel method using titanium(IV) isopropoxide and cobalt nitrate as precursors. X-Ray diffraction (XRD) results showed that titania and Co/TiO2 nanoparticles only include anatase phase. The framework substitution of Co in TiO2 nanoparticles was established by XRD, scanning electron microscopy equipped with energy dispersive X-ray microanalysis (SEM-EDX) and Fourier transform infrared (FT-IR) techniques. Transmission electron microscopy (TEM) images confirmed the nanocrystalline nature of Co/TiO2. The increase of cobalt doping enhanced “red-shift” in the UV-Vis absorption spectra. The dopant suppresses the growth of TiO2 grains, agglomerates them and shifts the band absorption of TiO2 from ultraviolet (UV) to visible region. The photocatalytic activity of samples was tested for degradation of methyl orange (MO) solutions. Although the photocatalytic activity of undoped TiO2 was found to be higher than that of Co/TiO2 under UV irradiation, the presence of 0.5% Co dopant in TiO2 resulted in a catalyst with the highest activity under visible irradiation.  相似文献   

16.
The Ni/TiO2 nanoparticles with different Ni dopant content were prepared by a modified sol–gel method. The structure and photoinduced charge properties of the as-prepared catalysts were determined using X-ray diffraction, transmission electron microscopy, UV–vis diffuse reflectance spectroscopy and surface photovoltage spectroscopy techniques, and the photocatalytic efficiency of these catalysts was tested using an organic dye. It was shown that Ni modification could greatly enhance the photocatalytic efficiency of these nanocomposite catalysts by taking the photodegradation of methyl orange as a model reaction. With appropriate ratio of Ni and TiO2, Ni/TiO2 nanocomposites showed the superior photocatalytic activity than the single TiO2 nanoparticles. Surface photovoltage spectra demonstrated that Ni modification could effectively inhibit the recombination of the photoinduced electron and holes of TiO2. This electron–hole pair separation conditions are responsible for the higher photocatalytic performance of Ni/TiO2 nanocomposites in the visible region of electromagnetic spectrum.  相似文献   

17.
A novel FTO/WO3 electrode decorated with MoS2 was constructed using two simple and low-cost techniques involving a modified single-step sol-gel method for the WO3 film together with the electrodeposition of amorphous MoS2. The photoelectrocatalytic performance of the material was investigated by monitoring the degradation of Reactive Blue 198 dye under visible-light irradiation. The FTO/WO3/MoS2 electrode exhibited excellent photocatalytic activity and afforded total decolorization of the dye after 90 min at low applied current density (5 mA cm?2). The results described herein support the view that MoS2 acts as a noble metal-free cocatalyst by promoting H2 evolution and assisting in the suppression of electron/hole pair recombination in the photocatalytic material (WO3), thereby improving the process of decolorization of the dye solution. The novel approach of combining of the WO3 and MoS2 materials shows particular promise and may prove to be very effective in the photocatalytic degradation of other hazardous organic compounds.  相似文献   

18.
In order to reach an antibacterial, photocatalytic, and hydrophilic coating, commercial grade polyurethane (CPU) resin was modified with silver ion exchanged montmorillonite/TiO2 nanocomposite in various montmorillonite to TiO2 nanoparticle ratios. To characterize the prepared nanocomposites and coatings, X-ray diffraction patterns, FTIR and UV–Vis spectroscopy and SEM images were used. The modified commercial grade polyurethane coatings containing nanocomposites show better properties, including hydrophilicity, degradation of organic pollutants, antibacterial activity and water resistivity, compared to unmodified commercial grade polyurethane coatings. The water droplet contact angle of unmodified CPU coating was 70°, however it decreased to lower than 10° in modified CPU coatings after 24 h LED lamp irradiation. Decolorization efficiency of malachite green dye solution by the use of modified CPU coatings achieved up to 70% after 5 h LED lamp illumination, compared to less than 5% for unmodified CPU coatings. Modified CPU coatings also showed significant water resistivity and antibacterial properties.  相似文献   

19.
Bi2O2.7/Bi2Ti2O7 composite photocatalyst films are synthesized by sol–gel dip-coating. The ratio of adding Bi and Ti precursors can be controlled during the preparation process. The phase structure is confirmed by X-ray diffraction. The UV–visible diffuse reflectance spectrum shows that the composite catalysts present light absorption in the visible region. The obtained Bi2O2.7/Bi2Ti2O7 composite films possess superior photocatalytic degradation of rhodamine B, owing to the visible light response of Bi2O2.7 and the separation of photogenerated electrons and holes between the two components. As a result, the Bi2O2.7/Bi2Ti2O7 (Bi/Ti = 1:1) displays the highest photocatalytic activity under visible light or UV light irradiation for the degradation of different organic dyes, including methyl blue, methyl orange and acid orange 7.  相似文献   

20.
Bi2O3/BiFeO3 composite was successfully fabricated by a conventional sol–gel method and structural properties were characterized based on X-ray diffractometer, scanning electron microscope, transmission electron microscope, energy-dispersive X-ray analyzer, nitrogen adsorption–desorption measurement, and UV–visible diffuse reflectance spectroscopy. Bi2O3/BiFeO3 had a good absorption for visible light, which was benefit to photocatalytic activity. The highest degradation efficiency was obtained when the content of Bi2O3 in Bi2O3/BiFeO3 was 63.9%. Effect of experimental conditions was investigated, and the highest photocatalytic activity of Bi2O3/BiFeO3 was observed at photocatalyst dosage of 0.5 g/L, initial BPA concentration of 10 mg/L, and solution pH of 6.3. Bi2O3/BiFeO3 photocatalyst exhibited enhanced photocatalytic activity for BPA, and the reaction rate constant over Bi2O3/BiFeO3 composite was 2.23, 3.65, and 8.71 times higher than that of BiFeO3, Bi2O3 and commercial TiO2 (P25), respectively. Bi2O3/BiFeO3 showed high photocatalytic activity after three cycles, suggesting that it was a stable photocatalyst. The possible photocatalytic mechanism has been discussed on the basis of the theoretical calculation and the experimental results. The hydroxyl and superoxide radicals together with photogenerated holes played significant roles in the photocatalytic reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号