首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
This paper deals with the Cauchy problem for a shallow water equation with high-order nonlinearities, y t +u m+1 y x +bu m u x y=0, where b is a constant, $m\in \mathbb{N}$ , and we have the notation $y:= (1-\partial_{x}^{2}) u$ , which includes the famous Camassa–Holm equation, the Degasperis–Procesi equation, and the Novikov equation as special cases. The local well-posedness of strong solutions for the equation in each of the Sobolev spaces $H^{s}(\mathbb{R})$ with $s>\frac{3}{2}$ is obtained, and persistence properties of the strong solutions are studied. Furthermore, although the $H^{1}(\mathbb{R})$ -norm of the solution to the nonlinear model does not remain constant, the existence of its weak solutions in each of the low order Sobolev spaces $H^{s}(\mathbb{R})$ with $1<s<\frac{3}{2}$ is established, under the assumption $u_{0}(x)\in H^{s}(\mathbb{R})\cap W^{1,\infty}(\mathbb{R})$ . Finally, the global weak solution and peakon solution for the equation are also given.  相似文献   

2.
In this paper, we study the regularity criteria for axisymmetric weak solutions to the MHD equations in ?3. Let ω θ , J θ and u θ be the azimuthal component of ω, J and u in the cylindrical coordinates, respectively. Then the axisymmetric weak solution (u, b) is regular on (0, T) if (ω θ , J θ ) ∈ L q (0, T; L p ) or (ω θ , ▽(u θ e θ )) ∈ L q (0, T; L p ) with $\tfrac{3} {p} + \tfrac{2} {q} \leqslant 2$ , $\tfrac{3} {2} < p < \infty$ . In the endpoint case, one needs conditions $\left( {\omega _\theta ,J_\theta } \right) \in L^1 \left( {0,T;\dot B_{\infty ,\infty }^0 } \right)$ or $\left( {\omega _\theta ,\nabla \left( {u_\theta e_\theta } \right)} \right) \in L^1 \left( {0,T;\dot B_{\infty ,\infty }^0 } \right)$ .  相似文献   

3.
We consider the asymptotic behavior of the solutions to the equation ${u_{t}-u_{xx} = \lambda(1 + {\delta}u_{x}^{2})(1 - u)^{-2}}$ , which comes from Micro-Electromechanical Systems (MEMS) devices modeling. It is shown that when the fringing field exists (i.e., δ?> 0), there is a critical value λ δ * > 0 such that if 0 < λ < λ δ * , the equation has a global solution for some initial data; while for λ > λ δ * , all solutions to the equation will quench at finite time. When the quenching happens, u has only finitely many quenching points for particular initial data. A one-side estimate is deduced for the quenching rate of u.  相似文献   

4.
Рассматривается сис тема ортогональных м ногочленов {P n (z)} 0 , удовлетворяющ их условиям $$\frac{1}{{2\pi }}\int\limits_0^{2\pi } {P_m (z)\overline {P_n (z)} d\sigma (\theta ) = \left\{ {\begin{array}{*{20}c} {0,m \ne n,P_n (z) = z^n + ...,z = \exp (i\theta ),} \\ {h_n > 0,m = n(n = 0,1,...),} \\ \end{array} } \right.} $$ где σ (θ) — ограниченная неу бывающая на отрезке [0,2π] функция с бесчисленным множе ством точек роста. Вводится последовательность параметров {аn 0 , независимых дру г от друга и подчиненных единств енному ограничению { ¦аn¦<1} 0 ; все многочлены {Р n (z)} 0/∞ можно найти по формуле $$P_0 = 1,P_{k + 1(z)} = zP_k (z) - a_k P_k^ * (z),P_k^ * (z) = z^k \bar P_k \left( {\frac{1}{z}} \right)(k = 0,1,...)$$ . Многие свойства и оце нки для {P n (z)} 0 и (θ) можн о найти в зависимости от этих параметров; например, условие \(\mathop \Sigma \limits_{n = 0}^\infty \left| {a_n } \right|^2< \infty \) , бо лее общее, чем условие Г. Cerë, необходимо и достато чно для справедливости а симптотической форм улы в области ¦z¦>1. Пользуясь этим ме тодом, можно найти также реш ение задачи В. А. Стекло ва.  相似文献   

5.
We show that for nn? 4 the L-norm of weak solutions of the Navier-Stokes equations on ?n with generalized energy inequality decays like $\parallel u(t, \cdot )\parallel _\infty = O(t^{ - ({{n + 1)} \mathord{\left/ {\vphantom {{n + 1)} 2}} \right. \kern-0em} 2}} ),if(1 + | \cdot |)|u(0, \cdot )| \in L_1 $ and $$\int_{\mathbb{R}^n } {u(0,x)} dx = 0$$ . The same holds for strong solutions in all dimensions, if additionally u(0, ·) ε Lp p >n.  相似文献   

6.
This paper focuses on the dilute real symmetric Wigner matrix Mn=1√n(aij)n×n,whose offdiagonal entries aij(1 i=j n)have mean zero and unit variance,Ea4ij=θnα(θ0)and the fifth moments of aij satisfy a Lindeberg type condition.When the dilute parameter 0α13and the test function satisfies some regular conditions,it proves that the centered linear eigenvalue statistics of Mn obey the central limit theorem.  相似文献   

7.
Using elementary arguments based on the Fourier transform we prove that for ${1 \leq q < p < \infty}$ and ${s \geq 0}$ with s > n(1/2 ? 1/p), if ${f \in L^{q,\infty} (\mathbb{R}^n) \cap \dot{H}^s (\mathbb{R}^n)}$ , then ${f \in L^p(\mathbb{R}^n)}$ and there exists a constant c p,q,s such that $$\| f \|_{L^{p}} \leq c_{p,q,s} \| f \|^\theta _{L^{q,\infty}} \| f \|^{1-\theta}_{\dot{H}^s},$$ where 1/pθ/q + (1?θ)(1/2?s/n). In particular, in ${\mathbb{R}^2}$ we obtain the generalised Ladyzhenskaya inequality ${\| f \| _{L^4} \leq c \| f \|^{1/2}_{L^{2,\infty}} \| f \|^{1/2}_{\dot{H}^1}}$ .We also show that for s = n/2 and q > 1 the norm in ${\| f \|_{\dot{H}^{n/2}}}$ can be replaced by the norm in BMO. As well as giving relatively simple proofs of these inequalities, this paper provides a brief primer of some basic concepts in harmonic analysis, including weak spaces, the Fourier transform, the Lebesgue Differentiation Theorem, and Calderon–Zygmund decompositions.  相似文献   

8.
We consider the degenerate elliptic operator acting on ${C^2_b}$ functions on [0,∞) d : $$\mathcal{L}f(x)=\sum_{i=1}^d a_i(x) x_i^{\alpha_i} \frac{\partial^2 f}{\partial x_i^2} (x) +\sum_{i=1}^d b_i(x) \frac{\partial f}{\partial x_i}(x), $$ where the a i are continuous functions that are bounded above and below by positive constants, the b i are bounded and measurable, and the ${\alpha_i\in (0,1)}$ . We impose Neumann boundary conditions on the boundary of [0,∞) d . There will not be uniqueness for the submartingale problem corresponding to ${\mathcal{L}}$ . If we consider, however, only those solutions to the submartingale problem for which the process spends 0 time on the boundary, then existence and uniqueness for the submartingale problem for ${\mathcal{L}}$ holds within this class. Our result is equivalent to establishing weak uniqueness for the system of stochastic differential equations $$ {\rm d}X_t^i=\sqrt{2a_i(X_t)} (X_t^i)^{\alpha_i/2}{\rm d}W^i_t + b_i(X_t) {\rm d}t + {\rm d}L_t^{X^i},\quad X^i_t \geq 0, $$ where ${W_t^i}$ are independent Brownian motions and ${L^{X_i}_t}$ is a local time at 0 for X i .  相似文献   

9.
We are concerned with the elliptic problem $${\varepsilon ^2}{\Delta _{{S^n}}}u - u + {u^p} = 0{\text{ in }}{S^n},u > 0{\text{ in }}{S^n}$$ , where ${\Delta _{{S^n}}}$ is the Laplace-Beltrami operator on $\mathbb{S}^n : = \left\{ {x \in \mathbb{R}^{n + 1} ;\left\| x \right\| = 1} \right\}\left( {n \geqslant 3} \right)$ , and p ? 2. We construct a smooth branch C of solutions concentrating on the equator S n ∩ {x n+1 = 0}. Using the Crandall-Rabinowitz bifurcation theorem, we show that C has infinitely many bifurcation points from which continua of nonradial solutions emanate. In applying the bifurcation theorem, we verify the transversality condition directly.  相似文献   

10.
Let ${N \geq 3}$ and u be the solution of u t = Δ log u in ${\mathbb{R}^N \times (0, T)}$ with initial value u 0 satisfying ${B_{k_1}(x, 0) \leq u_{0} \leq B_{k_2}(x, 0)}$ for some constants k 1k 2 > 0 where ${B_k(x, t) = 2(N - 2)(T - t)_{+}^{N/(N - 2)}/(k + (T - t)_{+}^{2/(N - 2)}|x|^{2})}$ is the Barenblatt solution for the equation and ${u_0 - B_{k_0} \in L^{1}(\mathbb{R}^{N})}$ for some constant k 0 > 0 if ${N \geq 4}$ . We give a new different proof on the uniform convergence and ${L^1(\mathbb{R}^N)}$ convergence of the rescaled function ${\tilde{u}(x, s) = (T - t)^{-N/(N - 2)}u(x/(T - t)^{-1/(N - 2)}, t), s = -{\rm log}(T - t)}$ , on ${\mathbb{R}^N}$ to the rescaled Barenblatt solution ${\tilde{B}_{k_0}(x) = 2(N - 2)/(k_0 + |x|^{2})}$ for some k 0 > 0 as ${s \rightarrow \infty}$ . When ${N \geq 4, 0 \leq u_0(x) \leq B_{k_0}(x, 0)}$ in ${\mathbb{R}^N}$ , and ${|u_0(x) - B_{k_0}(x, 0)| \leq f \in L^{1}(\mathbb{R}^{N})}$ for some constant k 0 > 0 and some radially symmetric function f, we also prove uniform convergence and convergence in some weighted L 1 space in ${\mathbb{R}^N}$ of the rescaled solution ${\tilde{u}(x, s)}$ to ${\tilde{B}_{k_0}(x)}$ as ${s \rightarrow \infty}$ .  相似文献   

11.
The authors study the Cauchy problem for the semi-linear damped wave equation $$u_{tt} - \Delta u + b\left( t \right)u_t = f\left( u \right), u\left( {0,x} \right) = u_0 \left( x \right), u_t \left( {0,x} \right) = u_1 \left( x \right)$$ in any space dimension n ≥ 1. It is assumed that the time-dependent damping term b(t) > 0 is effective, and in particular tb(t) → ∞ as t → ∞. The global existence of small energy data solutions for |f(u)| ≈ |u| p in the supercritical case of $p > \tfrac{2} {n}$ and $p \leqslant \tfrac{n} {{n - 2}}$ for n ≥ 3 is proved.  相似文献   

12.
One considers the problem of the asymptotic behavior for K→+∞ of the solution of the Cauchy problem $$u_{tt} - u_{xx} + \kappa ^2 u = 0; u|_{t = 0} = \theta (x), u_t |_{t = 0} = 0 (t > 0 - fixed)$$ Hereθ(x) is the Heaviside function. In the neighborhood of the characteristics x=±t function u(x,t)?2 oscillates exceptionally fast (the wavelength is of order k?2). Near the t axis the asymptotics of u(x,t) contains the Fresnel integral.  相似文献   

13.
We consider the weighted space W 1 (2) (?,q) of Sobolev type $$W_1^{(2)} (\mathbb{R},q) = \left\{ {y \in A_{loc}^{(1)} (\mathbb{R}):\left\| {y''} \right\|_{L_1 (\mathbb{R})} + \left\| {qy} \right\|_{L_1 (\mathbb{R})} < \infty } \right\} $$ and the equation $$ - y''(x) + q(x)y(x) = f(x),x \in \mathbb{R} $$ Here f ε L 1(?) and 0 ? qL 1 loc (?). We prove the following:
  1. The problems of embedding W 1 (2) (?q) ? L 1(?) and of correct solvability of (1) in L 1(?) are equivalent
  2. an embedding W 1 (2) (?,q) ? L 1(?) exists if and only if $$\exists a > 0:\mathop {\inf }\limits_{x \in R} \int_{x - a}^{x + a} {q(t)dt > 0} $$
  相似文献   

14.
We consider the Cauchy problem for the pth order nonlinear Schrödinger equation in one space dimension $$\left\{\begin{array}{ll}iu_{t} + \frac{1}{2} u_{xx} = |u|^{p}, x \in {\bf R}, \, t > 0, \\ \qquad u(0, x) = u_{0} (x), \; x \in {\bf R},\end{array}\right.$$ where \({p > p_{s} = \frac{3 + \sqrt{17}}{2}}\) . We reveal that p = 4 is a new critical exponent with respect to the large time asymptotic behavior of solutions. We prove that if p s p < 4, then the large time asymptotics of solutions essentially differs from that for the linear case, whereas it has a quasilinear character for the case of p > 4.  相似文献   

15.
We consider a class of Kolmogorov equation $$Lu={\sum^{p_0}_{i,j=1}{\partial_{x_i}}(a_{ij}(z){\partial_{x_j}}u)}+{\sum^{N}_{i,j=1}b_{ij}x_{i}{\partial_{x_j}}u-{\partial_t}u}={\sum^{p_0}_{j=1}{\partial_{x_j}}F_{j}(z)}$$ in a bounded open domain ${\Omega \subset \mathbb{R}^{N+1}}$ , where the coefficients matrix (a ij (z)) is symmetric uniformly positive definite on ${\mathbb{R}^{p_0} (1 \leq p_0 < N)}$ . We obtain interior W 1,p (1 < p < ∞) regularity and Hölder continuity of weak solutions to the equation under the assumption that coefficients a ij (z) belong to the ${VMO_L\cap L^\infty}$ and ${({b_{ij}})_{N \times N}}$ is a constant matrix such that the frozen operator ${L_{z_0}}$ is hypoelliptic.  相似文献   

16.
Sufficient geometric conditions are given which determine when the Cauchy–Pexider functional equation f(x)g(y) = h(x + y) restricted to x, y lying on a hypersurface in ${\mathbb{R}^d}$ has only solutions which extend uniquely to exponential affine functions ${\mathbb{R}^d \to \mathbb{C}}$ (when f, g, h are assumed to be measurable and non-trivial). The Cauchy–Pexider-type functional equations ${\prod_{j=0}^df_j(x_j)=F(\sum_{j=0}^dx_j)}$ for ${x_0, \ldots,x_d}$ lying on a curve and ${f_1(x_1)f_2(x_2)f_3(x_3)=F(x_1+x_2+x_3)}$ for x 1, x 2, x 3 lying on a hypersurface are also considered.  相似文献   

17.
In 1965, Lu Yu-Qian discovered that the Poisson kernel of the homogenous domain S m,p,q={Z∈Cm×m, Z1∈Cm×p,Z2 ∈Cq×m|2i1( Z-Z+)-Z1Z1′-Z2′Z20} does not satisfy the Laplace-Beltrami equation associated with the Bergman metric when S m,p,q is not symmetric. However the map T0:Z→Z, Z1→Z1 , Z2→Z2 transforms S m,p,q into a domain S I (m, m + p + q) which can be mapped by the Cayley transformation into the classical domains R I (m, m + p + q). The pull back of the Bergman metric of R I (m, m + p + q) to S m,p,q is a Riemann metric ds 2 which is not a Khler metric and even not a Hermitian metric in general. It is proved that the Laplace-Beltrami operator associated with the metric ds 2 when it acts on the Poisson kernel of S m,p,q equals 0. Consequently, the Cauchy formula of S m,p,q can be obtained from the Poisson formula.  相似文献   

18.
Let ?? be an open subset of R d and ${ K=-\sum^d_{i,j=1}\partial_i\,c_{ij}\,\partial_j+\sum^d_{i=1}c_i\partial_i+c_0}$ a second-order partial differential operator with real-valued coefficients ${c_{ij}=c_{ji}\in W^{1,\infty}_{\rm loc}(\Omega),c_i,c_0\in L_{\infty,{\rm loc}}(\Omega)}$ satisfying the strict ellipticity condition ${C=(c_{ij}) >0 }$ . Further let ${H=-\sum^d_{i,j=1} \partial_i\,c_{ij}\,\partial_j}$ denote the principal part of K. Assuming an accretivity condition ${C\geq \kappa (c\otimes c^{\,T})}$ with ${\kappa >0 }$ , an invariance condition ${(1\!\!1_\Omega, K\varphi)=0}$ and a growth condition which allows ${\|C(x)\|\sim |x|^2\log |x|}$ as |x| ?? ?? we prove that K is L 1-unique if and only if H is L 1-unique or Markov unique.  相似文献   

19.
In this paper, we will prove the existence of infinitely many solutions for the following elliptic problem with critical Sobolev growth and a Hardy potential: $$-\Delta u-\frac{\mu}{|x|^2}u = |u|^{2^{\ast}-2}u+a u\quad {\rm in}\;\Omega,\quad u=0 \quad {\rm on}\; \partial\Omega,\qquad (*)$$ under the assumptions that N ≥ 7, ${\mu\in \left[0,\frac{(N-2)^2}4-4\right)}$ and a > 0, where ${2^{\ast}=\frac{2N}{N-2}}$ , and Ω is an open bounded domain in ${\mathbb{R}^N}$ which contains the origin. To achieve this goal, we consider the following perturbed problem of (*), which is of subcritical growth, $$-\Delta u-\frac{\mu}{|x|^2}u = |u|^{2^{\ast}-2-\varepsilon_n}u+au \quad {\rm in}\,\Omega, \quad u=0 \quad {\rm on}\;\partial\Omega,\qquad(\ast\ast)_n$$ where ${\varepsilon_{n} > 0}$ is small and ${\varepsilon_n \to 0}$ as n → + ∞. By the critical point theory for the even functionals, for each fixed ${\varepsilon_{n} > 0}$ small, (**) n has a sequence of solutions ${u_{k,\varepsilon_{n}} \in H^{1}_{0}(\Omega)}$ . We obtain the existence of infinitely many solutions for (*) by showing that as n → ∞, ${u_{k,\varepsilon_{n}}}$ converges strongly in ${H^{1}_{0}(\Omega)}$ to u k , which must be a solution of (*). Such a convergence is obtained by applying a local Pohozaev identity to exclude the possibility of the concentration of ${\{u_{k,\varepsilon_n}\}}$ .  相似文献   

20.
This paper is concerned with the Cauchy problem for the Keller–Segel system $$\left\{\begin{array}{l@{\quad}l}u_t = \nabla \cdot (\nabla u - u \nabla v) & \hbox{in } {\bf R}^{2} \times(0,\infty),\\v_t = \Delta v - \lambda v + u & \hbox{ in } {\bf R}^2 \times(0,\infty),\\u(x,0) = u_0 (x) \geq 0, \; v(x,0) = v_0 (x) \geq 0 & \hbox{ in} {\bf R}^2\end{array}\right.$$ with a constant λ ≥ 0, where ${(u_0, v_0) \in (L^1 ({\bf R}^2) \cap L^\infty ({\bf R}^2) ) \times (L^1 ({\bf R}^2) \cap H^1 ({\bf R}^2))}$ . Let $$m (u_0;{\bf R}^2) = \int\limits_{{\bf R}^2} u_0 (x) dx$$ . The same method as in [9] yields the existence of a blowup solution with m (u 0; R 2) > 8π. On the other hand, it was recently shown in [7] that under additional hypotheses ${u_0 \log (1 + |x|^2) \in L^1 ({\bf R}^2)}$ and ${u_0 \log u_0 \in L^1 ({\bf R}^2)}$ , any solution with m(u 0; R 2) < 8π exists globally in time. In[18], the extra assumptions were taken off, but the condition on mass was restricted to m (u 0; R 2) < 4π. In this paper, we prove that any solution with m (u 0; R 2) < 8π exists globally in time under no extra conditions. Furthermore the global existence of solutions is obtained under some condition on u 0 also in the critical case m (u 0; R 2) = 8π.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号