首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phosphatidylethanolamines are a major class of phospholipids found in cellular membranes. Identification of the alterations in these phospholipids, induced by free radicals, could provide new tools for in vivo diagnosis of oxidative stress. In this study, 1‐palmitoyl‐2‐linoleoyl‐phosphatidylethanolamine oxidation products, induced by the hydroxyl radical, were studied using LC‐MS and LC‐MS/MS. Data obtained allowed the identification and separation of isomeric oxidative products with modifications in the sn‐2 acyl chain, attributed to long‐ and short‐chain products. Among long‐chain products keto, keto‐hydroxy, hydroxy, poly‐hydroxy, peroxy and hydroxy–peroxy derivatives were identified. Product ions formed by loss of two H2O molecules vs loss of HOOH, allowed the identification of, respectively, di‐ (or poli‐) hydroxy vs peroxy derivatives. Location of functional groups was determined by the product ions formed by cleavage of C–C bonds, in the vicinity of the oxidation positions, allowing the identification of C9, C12 and C13 as the predominant substituted positions. Short‐chain products identified comprised aldehydes, hydroxy‐aldehydes and carboxylic derivatives, with modified sn‐2 acyl lengths of C7–C9 and C11, C12. Among the short‐chain products identified, C9 products showed higher relative abundance. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Exposures of the skin with electromagnetic radiation of wavelengths between 670 nm and 1400 nm are often used as a general treatment to improve wound healing and reduce pain, for example, in chronic diabetic skin lesions. We investigated the effects of water‐filtered infrared A (wIRA) and of narrow‐band IR‐A provided by a light‐emitting diode LED (LED‐IR‐A) irradiation in vitro on 3T3 fibroblast cultures under defined conditions with and without glyoxal administration. Glyoxal triggers the formation of advanced glycation end products, thereby mimicking a diabetic metabolic state. Cell viability and apoptotic changes were determined by flow cytometry after vital staining with Annexin V, YO‐PRO‐1 and propidium iodide (PI), and by SubG1 assay. Mitochondrial function and oxidative stress were examined by vital staining for radical production, mitochondrial membrane potential (MMP) and the ratio of reduced‐to‐oxidized glutathione (GSH/GSSG). The metabolic state was monitored by a resazurin conversion assay. The numbers of apoptotic cells were reduced in cultures irradiated with wIRA or LED‐IR‐A. More mitochondria showed a well‐polarized MMP after wIRA irradiation in glyoxal damaged cells. LED‐IR‐A treatment specifically restored the GSH/GSSG ratio. The immediate positive effects of wIRA and LED‐IR‐A observed in living cells, particularly on mitochondria, reflect the therapeutic benefits of wIRA and LED‐IR‐A.  相似文献   

3.
UV‐chromophores contained in human skin may act as endogenous sensitizers of photooxidative stress and can be employed therapeutically for the photodynamic elimination of malignant cells. Here, we report that 6‐formylindolo[3,2‐b]carbazole (FICZ), a tryptophan‐derived photoproduct and endogenous aryl hydrocarbon receptor agonist, displays activity as a nanomolar sensitizer of photooxidative stress, causing the photodynamic elimination of human melanoma and nonmelanoma skin cancer cells in vitro and in vivo. FICZ is an efficient UVA/Visible photosensitizer having absorbance maximum at 390 nm (ε = 9180 L mol?1 cm?1), and fluorescence and singlet oxygen quantum yields of 0.15 and 0.5, respectively, in methanol. In a panel of cultured human squamous cell carcinoma and melanoma skin cancer cells (SCC‐25, HaCaT‐ras II‐4, A375, G361, LOX), photodynamic induction of cell death was elicited by the combined action of solar simulated UVA (6.6 J cm?2) and FICZ (≥10 nm ), preceded by the induction of oxidative stress as substantiated by MitoSOX Red fluorescence microscopy, comet detection of Fpg‐sensitive oxidative genomic lesions and upregulated stress response gene expression (HMOX1, HSPA1A, HSPA6). In SKH1 “high‐risk” mouse skin, an experimental FICZ/UVA photodynamic treatment regimen blocked the progression of UV‐induced tumorigenesis suggesting feasibility of harnessing FICZ for the photooxidative elimination of malignant cells in vivo.  相似文献   

4.
In this study, we investigated the protective effects of a peptide (YGDEY, Tyr‐Gly‐Asp‐Glu‐Tyr) isolated from tilapia skin gelatin hydrolysates (TGHs), against UVB‐induced photoaging in human keratinocytes (HaCaT) cells. Results showed that YGDEY significantly decreased levels of intracellular reactive oxygen species (ROS), increased antioxidant factors (Superoxide Dismutase, SOD and Glutathione, GSH) expression and maintained balance between GSH and GSSG in HaCaT cells. Comet assay shows that YGDEY can protect DNA from oxidative damage. Furthermore, it significantly inhibited MMP‐1 (collagenase) and MMP‐9 (gelatinase) expression and increased Type I procollagen production. In addition, the molecular docking study showed that YGDEY may form active sites with MMP‐1 and MMP‐9. Moreover, Western blot analysis was utilized to measure the protein levels of UVB‐induced mitogen‐activated protein kinase (MAPK) and nuclear factor‐kappa B (NF‐κB) signaling pathways. Therefore, these results suggested that YGDEY has a therapeutic effectiveness in prevention of UVB‐induced cellular damage, and it is a candidate worthy of being developed as a potential natural antioxidant and food additive.  相似文献   

5.
Cutaneous exposure to solar ultraviolet (UV) radiation is a major causative factor in skin carcinogenesis, and improved molecular strategies for efficacious chemoprevention of nonmelanoma skin cancer (NMSC) are urgently needed. Toll‐like receptor 4 (TLR4) signaling has been shown to drive skin inflammation, photoimmunosuppression, and chemical carcinogenesis. Here we have examined the feasibility of genetic and pharmacological antagonism targeting cutaneous TLR4 for the suppression of UV‐induced NF‐κB and AP‐1 signaling in keratinocytes and mouse skin. Using immunohistochemical and proteomic microarray analysis of human skin, we demonstrate for the first time that a significant increase in expression of TLR4 occurs in keratinocytes during the progression from normal skin to actinic keratosis, also detectible during further progression to squamous cell carcinoma. Next, we demonstrate that siRNA‐based genetic TLR4 inhibition blocks UV‐induced stress signaling in cultured keratinocytes. Importantly, we observed that resatorvid (TAK‐242), a molecularly targeted clinical TLR4 antagonist, blocks UV‐induced NF‐κB and MAP kinase/AP‐1 activity and cytokine expression (Il‐6, Il‐8, and Il‐10) in cultured keratinocytes and in topically treated murine skin. Taken together, our data reveal that pharmacological TLR4 antagonism can suppress UV‐induced cutaneous signaling, and future experiments will explore the potential of TLR4‐directed strategies for prevention of NMSC.  相似文献   

6.
Selenium methylselenocysteine (Se-MeSeCys) is a common selenocompound in the diet with a tested chemopreventive effect. This study investigated the potential protective effect of Se-MeSeCys against a chemical oxidative stress induced by tert-butyl hydroperoxide (t-BOOH) on human hepatoma HepG2 cells. Speciation of selenium derivatives by liquid chromatography–inductively coupled plasma mass spectrometry depicts Se-MeSeCys as the only selenocompound in the cell culture. Cell viability (lactate dehydrogenase) and markers of oxidative status—concentration of reduced glutathione (GSH) and malondialdehyde (MDA), generation of reactive oxygen species (ROS) and activity of the antioxidant enzymes glutathione peroxidase (GPx) and glutathione reductase (GR)—were evaluated. Pretreatment of cells with Se-MeSeCys for 20 h completely prevented the enhanced cell damage, MDA concentration and GR and GPx activity and the decreased GSH induced by t-BOOH but did not prevent increased ROS generation. The results show that treatment of HepG2 cells with concentrations of Se-MeSeCys in the nanomolar to micromolar range confers a significant protection against an oxidative insult.  相似文献   

7.
UVA‐driven photooxidative stress in human skin may originate from excitation of specific endogenous chromophores acting as photosensitizers. Previously, we have demonstrated that 3‐hydroxypyridine‐derived chromophores including B6‐vitamers (pyridoxine, pyridoxamine and pyridoxal) are endogenous photosensitizers that enhance UVA‐induced photooxidative stress in human skin cells. Here, we report that the B6‐vitamer pyridoxal is a sensitizer of genotoxic stress in human adult primary keratinocytes (HEKa) and reconstructed epidermis. Comparative array analysis indicated that exposure to the combined action of pyridoxal and UVA caused upregulation of heat shock (HSPA6, HSPA1A, HSPA1L, HSPA2), redox (GSTM3, EGR1, MT2A, HMOX1, SOD1) and genotoxic (GADD45A, DDIT3, CDKN1A) stress response gene expression. Together with potentiation of UVA‐induced photooxidative stress and glutathione depletion, induction of HEKa cell death occurred only in response to the combined action of pyridoxal and UVA. In addition to activational phosphorylation indicative of genotoxic stress [p53 (Ser15) and γ‐H2AX (Ser139)], comet analysis indicated the formation of Fpg‐sensitive oxidative DNA lesions, observable only after combined exposure to pyridoxal and UVA. In human reconstructed epidermis, pyridoxal preincubation followed by UVA exposure caused genomic oxidative base damage, procaspase 3 cleavage and TUNEL positivity, consistent with UVA‐driven photooxidative damage that may be relevant to human skin exposed to high concentrations of B6‐vitamers.  相似文献   

8.
Reactive metabolites are thought to play a pivotal role in the pathogenesis of some drug‐induced liver injury (DILI) and idiosyncratic adverse drug reactions (IADRs), which is of concern to patient safety and has been a cause of drugs being withdrawn from the market place. To identify drugs with a lower propensity for causing DILI and/or IADRs, high‐throughput assays to capture reactive metabolites are required in pharmaceutical industry for early drug discovery risk assessment. We describe the development of an assay to detect glutathione adducts with combined high sensitivity, enhanced specificity, and rapid data analysis. In this assay, compounds were incubated with human liver microsomes and a mixture of 1:1 of GSH (γ‐GluCysGly): GSX(γ‐GluCysGly‐13C215N) in a 96‐well plate format. UPLC‐UV and LTQ Orbitrap XL were employed to detect GSH‐adducts using the following mass spectrometry setups: (a) selected ion monitoring (SIM) at m/z of 274 ± 3 Da in negative mode with in‐source fragmentation (SCID), which enables simultaneously monitoring two characteristic product ions of m/z 272.0888 (γ‐glutamyl‐dehydroalanyl‐glycine) and 275.0926 (γ‐glutamyl‐dehydroalanyl‐glycine‐13C215N); (b) full scan mode for acquisition of exact mass of glutathione adducts; (c) data‐dependent MS2 scan through isotopic matching (M:M + 3.00375 = 1:1) for monitoring neutral loss fragments (144 Da from dehydroalanyl‐glycine) and for structural information of glutathione adducts. This approach was qualified using eight compounds known to form GSH conjugates as reported in the literature. The high sensitivity and specificity were demonstrated in identifying unique CysGly adducts in the case of clozapine, diclofenac, and raloxifene and in identifying GSH‐adducts of fragmented parent molecules in the case of amodiaquine and troglitazone. In addition, LC‐UV chromatograms in the presence or absence of GSH/GSX allowed for identification of the rearranged glutathione adducts without aforementioned characteristic fragment ions. Implement of this assay in drug discovery small molecule programs has successfully guided drug design.  相似文献   

9.
Ultraviolet (UV)–radiation‐induced immunosuppression has been linked with the risk of skin carcinogenesis. Approximately, 2 million new cases of skin cancers, including melanoma and nonmelanoma, diagnosed each year in the USA and therefore have a tremendous bad impact on public health. Dietary phytochemicals are promising options for the development of effective strategy for the prevention of photodamaging effects of UV radiation including the risk of skin cancer. Grape seed proanthocyanidins (GSPs) are such phytochemicals. Dietary administration of GSPs with AIN76A control diet significantly inhibits UV‐induced skin tumor development as well as suppression of immune system. UV‐induced suppression of immune system is commonly determined using contact hypersensitivity (CHS) model which is a prototype of T–cell‐mediated immune response. We present evidence that inhibition of UV‐induced suppression of immune system by GSPs is mediated through: (i) the alterations in immunoregulatory cytokines, interleukin (IL)‐10 and IL‐12, (ii) DNA repair, (iii) stimulation of effector T cells and (iv) DNA repair‐dependent functional activation of dendritic cells in mouse model. These information have important implications for the use of GSPs as a dietary supplement in chemoprevention of UV‐induced immunosuppression as well as photocarcinogenesis.  相似文献   

10.
Ultraviolet‐A (UV‐A)‐mediated bactericidal activity was enhanced by combined treatment with trans‐ferulic acid (trans‐FA, compound 1 ) or its derivatives. Derivative compounds 4 and 10 contain a phenyl group or an l ‐tyrosine HCl tert‐butyl ester, respectively, linked to the carboxyl group of trans‐FA. Of the three compounds, 10 exhibited the highest synergistic activity in a photobactericidal assay based on treating Escherichia coli with a derivative compound and UV‐A irradiation (wavelength 350–385 nm). Inactivation of viable cells at a 4.9 J cm?2 UV‐A fluence increased from 1.90 to 5.19 logs in the presence of 10 (100 μm ); a 4.95‐log inactivation was achieved with 10 (5 μm ) and a 7.4 J cm?2 UV‐A fluence. Addition of antioxidants significantly suppressed photosynergistic bactericidal activity, suggesting that reactive oxygen species (ROS) are involved in the combined bactericidal mechanism. Flow cytometry revealed that combined treatment with UV‐A and compound 10 , which showed the highest photobactericidal activity, generates an excess of oxidative radicals in bacterial cells. The bactericidal activity of compound 10 may be due to electrostatic interaction between the molecule's cationic moiety and the cell surface, followed by amplification of ROS generation in the cells.  相似文献   

11.
Drug bioactivation leading to the formation of reactive species capable of covalent binding to proteins represents an important cause of drug‐induced toxicity. Reactive metabolite detection using in vitro microsomal incubations is a crucial step in assessing potential toxicity of pharmaceutical compounds. The most common method for screening the formation of these unstable, electrophilic species is by trapping them with glutathione (GSH) followed by liquid chromatography/mass spectrometry (LC/MS) analysis. The present work describes the use of a brominated analog of glutathione, N‐(2‐bromocarbobenzyloxy)‐GSH (GSH‐Br), for the in vitro screening of reactive metabolites by LC/MS. This novel trapping agent was tested with four drug compounds known to form reactive metabolites, acetaminophen, fipexide, trimethoprim and clozapine. In vitro rat microsomal incubations were performed with GSH and GSH‐Br for each drug with subsequent analysis by liquid chromatography/high‐resolution mass spectrometry on an electrospray time‐of‐flight (ESI‐TOF) instrument. A generic LC/MS method was used for data acquisition, followed by drug‐specific processing of accurate mass data based on mass defect filtering and isotope pattern matching. GSH and GSH‐Br incubations were compared to control samples using differential analysis (Mass Profiler) software to identify adducts formed via the formation of reactive metabolites. In all four cases, GSH‐Br yielded improved results, with a decreased false positive rate, increased sensitivity and new adducts being identified in contrast to GSH alone. The combination of using this novel trapping agent with powerful processing routines for filtering accurate mass data and differential analysis represents a very reliable method for the identification of reactive metabolites formed in microsomal incubations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Herein, we report an effective and rapid method to purify glutathione S‐transferase (GST) using glutathione (GSH)‐modified poly(N‐isopropylacrylamide) (pNIPAAm) and mild, thermal conditions. A chain transfer agent modified with pyridyl disulfide was employed in the reversible addition–fragmentation chain transfer (RAFT) polymerization of NIPAAm. The resulting polymer had a narrow molecular weight distribution (polydispersity index = 1.21). Conjugation of GSH to the pyridyl disulfide–pNIPAAm reached 95% within 30 min as determined by UV–Vis monitoring of the release of pyridine‐2‐thione. GST was successfully thermoprecipitated upon heating the GSH–pNIPAAm above the lower critical solution temperature (LCST). The pull down assay was repeated with bovine serum albumin (BSA) and T4 lysozyme (T4L), which demonstrated the specificity of the polymer for GST. Due to its simplicity and high efficiency, this method holds great potential for large‐scale purification of GST‐tagged proteins.

  相似文献   


13.
Voriconazole is an antifungal agent and used as a prophylactic measure, especially in immunocompromised patients. However, there have been several reports of its adverse reactions, namely photosensitivity with intense inflammatory rashes and subsequent skin cancer development. To assess the effects of photosensitizing drugs voriconazole and hydrochlorothiazide (HCTZ ) on the enhancement of UV ‐induced inflammatory responses and UV ‐induced tumorigenesis, we utilized Xpa ‐knockout mice, which is DNA repair‐deficient and more susceptible to UV ‐induced inflammation and tumor development than wild‐type mice. Administration of voriconazole prior to broadband UVB exposure significantly upregulated multiple inflammatory cytokines compared with the vehicle‐ or HCTZ ‐administered groups. Voriconazole administration along with chronic UVB exposure produced significantly higher number of skin tumors than HCTZ or vehicle in Xpa ‐knockout mice. Furthermore, the investigation of UVB ‐induced DNA damage using embryonic fibroblasts of Xpa ‐knockout mice revealed a significantly higher 8‐oxo‐7,8‐dihydroguanine level in cells treated with voriconazole N‐oxide, a voriconazole‐metabolite during UV exposure. The data suggest that voriconazole plus UVB ‐induced inflammatory response may be related to voriconazole‐induced skin phototumorigenesis.  相似文献   

14.
Iron and/or ferritin accumulation are known to occur under pathological conditions in many inflammatory skin diseases or in human skin chronically exposed to UV light. Under such conditions, ferritin is believed to play an effective protective role in accommodating and 'deactivating' excess 'free' iron produced by the inflammatory process or the UV illumination. The present study compares the relationship between ferritin over-expression and effects of an oxidative stress induced chemically by tert-butyl hydroperoxide or photochemically by UV-A radiation. As shown by immunoassay, cultured MRC 5 and HS 68 fibroblasts treated for at least one day with transferrin or overnight with non-toxic concentrations of the ferric nitrilotriacetate complex express up to 10 times more ferritin than untreated cells, whereas a five-fold increase is obtained with NCTC 2544 keratinocytes. In all cases a parallel increase in soluble cellular iron is measured by inductive plasma emission spectroscopy. The superoxide dismutase and catalase activities and total glutathione levels are not modified by the iron treatment, whereas a transient increase in the Se-dependent glutathione peroxidase activity of keratinocytes is observed after a short incubation with the iron complex. In keratinocytes and fibroblasts, ferritin over-expression after iron treatment markedly inhibits lipid peroxidation but, paradoxically, not the mortality induced by tert-butyl hydroperoxide. In contrast, this excess ferritin does not protect cells from both the peroxidation and mortality induced by moderate doses (30 J/cm2) of UV-A radiation. As a consequence, protection against oxidative damage by excess ferritin synthesis clearly depends on the nature of the oxidative stress on cell targets and it seems to be of lesser importance in the case of photochemically induced oxidation.  相似文献   

15.
Solar ultraviolet (UV) radiation, particularly its UVB (280–320 nm) spectrum, is the primary environmental stimulus leading to skin carcinogenesis. Several botanical species with antioxidant properties have shown photochemopreventive effects against UVB damage. Costa Rica's tropical highland blackberry (Rubus adenotrichos) contains important levels of phenolic compounds, mainly ellagitannins and anthocyanins, with strong antioxidant properties. In this study, we examined the photochemopreventive effect of R. adenotrichos blackberry juice (BBJ) on UVB‐mediated responses in human epidermal keratinocytes and in a three‐dimensional (3D) reconstituted normal human skin equivalent (SE). Pretreatment (2 h) and posttreatment (24 h) of normal human epidermal keratinocytes (NHEKs) with BBJ reduced UVB (25 mJ cm?2)‐mediated (1) cyclobutane pyrimidine dimers (CPDs) and (2) 8‐oxo‐7,8‐dihydro‐2′‐deoxyguanosine (8‐oxodG) formation. Furthermore, treatment of NHEKs with BBJ increased UVB‐mediated (1) poly(ADP‐ribose) polymerase cleavage and (2) activation of caspases 3, 8 and 9. Thus, BBJ seems to alleviate UVB‐induced effects by reducing DNA damage and increasing apoptosis of damaged cells. To establish the in vivo significance of these findings to human skin, immunohistochemistry studies were performed in a 3D SE model, where BBJ was also found to decrease CPDs formation. These data suggest that BBJ may be developed as an agent to ameliorate UV‐induced skin damage.  相似文献   

16.
Melanoma incidences are increasing rapidly, and ultraviolet (UV) radiation from the sun is believed to be its major contributing factor. UV exposure causes DNA damage in skin which may initiate cutaneous skin cancers including melanoma. Melanoma arises from melanocytes, the melanin‐producing skin cells, following genetic dysregulations resulting into hyperproliferative phenotype and neoplastic transformation. Both UVA and UVB exposures to the skin are believed to trigger melanocytic hyperplasia and melanomagenesis. Melanocytes by themselves are deficient in repair of oxidative DNA damage and UV‐induced photoproducts. Nicotinamide, an active form of vitamin B3 and a critical component of the human body's defense system has been shown to prevent certain cancers including nonmelanoma skin cancers. However, the mechanism of nicotinamide's protective effects is not well understood. Here, we investigated potential protective effects and mechanism of nicotinamide against UVA‐ and/or UVB‐ induced damage in normal human epidermal melanocytes. Our data demonstrated an appreciable protective effect of nicotinamide against UVA‐ and/or UVB‐ induced DNA damage in melanocytes by decreasing both cyclobutane pyrimidine dimers and 8‐hydroxy‐2′‐deoxyguanosine levels. We found that the photoprotective response of nicotinamide was associated with the activation of nucleotide excision repair genes and NRF2 signaling. Further studies are needed to validate our findings in in vivo models.  相似文献   

17.
Exposure to ultraviolet (UV) light causes increased matrix metalloproteinase (MMP) activity and decreased collagen synthesis, leading to skin photoaging. Salvianolic acid B (SAB), a polyphenol, was extracted and purified from salvia miltiorrhiza. We assessed effects of SAB on UVB‐induced photoaging and investigated its molecular mechanism of action in UVB‐irradiated normal human dermal fibroblasts. Our results show that SAB significantly inhibited the UVB‐induced expression of metalloproteinases‐1 (MMP‐1) and interleukin‐6 (IL‐6) while promoting the production of type I procollagen and transforming growth factor β1 (TGF‐β1). Moreover, treatment with SAB in the range of 1–100 μg/mL significantly inhibited UVB‐induced extracellular signal‐regulated kinase (ERK), Jun N‐terminal kinase (JNK) and p38 phosphorylation, which resulted in decreasing UVB‐induced phosphorylation of c‐Fos and c‐Jun. These results indicate that SAB downregulates UV‐induced MMP‐1 expression by inhibiting Mitogen‐activated protein kinase (MAPK) signaling pathways and activator protein‐1 (AP‐1) activation. Our results suggest a potential use for SAB in skin photoprotection.  相似文献   

18.
Biomarkers involved in alcohol‐induced oxidative stress play an important role in alcoholic liver disease prevention and diagnosis. Alcohol‐induced oxidative stress in human liver L‐02 cells was used to discover the potential biomarkers. Metabolites from L‐02 cells induced by alcohol were measured by high‐performance liquid chromatography and mass spectrometry. Fourteen metabolites that allowed discrimination between control and model groups were discovered by multivariate statistical data analysis (i.e. principal components analysis, orthogonal partial least‐squares discriminate analysis). Based on the retention time, UV spectrum and LC–MS findings of the samples and compared with the authentic standards, eight biomarkers involved in alcohol‐induced oxidative stress, namely, malic acid, oxidized glutathione, γ‐glutamyl‐cysteinyl‐glycine, adenosine triphosphate, phenylalanine, adenosine monophosphate, nitrotyrosine and tryptophan, were identified. These biomarkers offered important targets for disease diagnosis and other researches.  相似文献   

19.
Cancer cells use elevated glutathione (GSH) levels as an inner line of defense to evade apoptosis and develop drug resistance. In this study, we describe a novel 2,4‐nitrobenzenesulfonyl (DNS) protected 2‐hydroxyisophthalamide system that exploits GSH for its activation into free 2‐hydroxyisophthalamide forming supramolecular M+/Cl? channels. Better permeation of the DNS protected compound into MCF‐7 cells compared to the free 2‐hydroxyisophthalamide and GSH‐activatable ion transport resulted in higher cytotoxicity, which was associated with increased oxidative stress that further reduced the intracellular GSH levels and altered mitochondrial membrane permeability leading to the induction of the intrinsic apoptosis pathway. The GSH‐activatable transport‐mediated cell death was further validated in rat insulinoma cells (INS‐1E); wherein the intracellular GSH levels showed a direct correlation to the resulting cytotoxicity. Lastly, the active compound was found to restrict the growth and proliferation of 3D spheroids of MCF‐7 cells with efficiency similar to that of the anticancer drug doxorubicin.  相似文献   

20.
A UPLC‐TOF/MS‐based metabolomics method was established to explore the therapeutic mechanisms of rattan stems of S. chinensis (SCS) in Alzheimer's disease (AD). Experimental AD model was induced by intra‐hippocampal Aβ1–42 injection in rats. Cognitive function and oxidative stress condition in brain of AD rats were assessed using Morris water maze tests and antioxidant assays [malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH‐Px)], respectively. UPLC‐TOF/MS combined with multivariate statistical analysis were conducted to study the changes in metabolic networks in serum of rats. The results indicated that the AD model was established successfully and the inducement of Aβ1–42 caused a decline in spatial learning and memory of rats. The injection of Aβ1–42 in rat brains significantly elevated the level of MDA, and reduced SOD and GSH‐Px activities. In addition, SCS showed significant anti‐AD effects on model rats. A total of 30 metabolites were finally identified as potential biomarkers of AD and 14 of them had a significant recovery compared with the AD model after SCS administration. Changes in AD metabolite profiling were restored to different levels through the regulation of 13 pathways. This is first report on the use of the UPLC‐TOF/MS‐based serum metabolomics method to investigate therapeutic effects of SCS on AD, and enrich potential biomarkers and metabolic networks of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号