首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 357 毫秒
1.
On the viscosity of suspensions of solid spheres   总被引:1,自引:0,他引:1  
A cell theory is used to derive the dependence of the zero-shear-rate viscosity on volume concentration for a suspension of uniform, solid, neutrally buoyant spheres. This result reduces to Einstein's solution at infinite dilution and to Frankel and Acrivos's expression in the limit as the concentration approaches its maximum value. Good agreement is found between the solution and the available data for the entire concentration range, provided that the maximum concentration is determined from the viscosity data themselves.Nomenclature a radius of sphere - d the distance separating the sphere surfaces measured parallel to the line connecting the sphere centers - E energy dissipation rate in one-half the liquid volume separating the spheres - E cell total energy dissipation rate in the cell - E homogeneous energy dissipation rate in the cell of a hypothetical one phase fluid - E interaction energy dissipation rate in the cell due to sphere interactions - E sphere energy dissipation rate in the cell due to the sphere at the cell center - F force on one sphere - h minimum separation distance between two spheres - J (1/2)d = one-half the distance separating the sphere surfaces measured parallel to the line connecting the sphere centers - p pressure - W velocity of one sphere in squeezing flow between two spheres relative to the midpoint of the line connecting the sphere centers - i unit vectors in thei-th direction - elongation rate - viscosity of the suspending fluid - r */ = relative viscosity - * viscosity of the suspension - the total stress tensor - the part of the total stress tensor that vanishes at equilibrium - volume fraction of spheres  相似文献   

2.
Summary In this note the Author gives a general and unified treatment of first order phase equilibria for classical bodies like those considered by Truesdell and Toupin in[3].The Author reaches a system of partial differential equations (generalized Clapeyron equations) the conditions of whose solution are shown always to be satisfied.In particular, the Author derives the equations governing the polarized phase equilibrium for a fluid.Besides the equations ruling the phase equilibrium for a two phase n-component fluid mixture are given and the equivalence with the statical Gibbs-Duhem relation is shown.
Sommario In questa nota l'Autore presenta una trattazione generale ed unificata degli equilibri di fase del primo ordine per corpi classici come quelli definiti da Truesdell e Toupin in[3].L'Autore perviene ad un sistema di equazioni alle derivate parziali (equazioni di Clapeyron generalizzate) del quale si dimostra la integrabilità.In particolare, si deducono le equazioni che governano gli equilibri di fase polarizzati.Inoltre si ottengono le equazioni che regolano l'equilibrio di fase per una miscela fluida a n componenti; in questo caso si dimostra l'equivalenza delle equazioni con la relazione statica di Gibbs-Duhem.


This work was supported by the Gruppo Nazionale per la Fisica Matematica of C.N.R.  相似文献   

3.
An experimental study of gas-liquid slug flow   总被引:6,自引:0,他引:6  
Experimental measurements were carried out for upward gas-liquid slug flow in a 50.8 mm diameter pipe. Parallel conductance wires were used to distinguish the Taylor bubbles and liquid slugs and to determine translation velocities and lengths, an electrochemical probe provided the magnitude and direction of the wall shear stress and a radio-frequency local probe was used for the axial and radial distribution of voidage in the liquid slugs. Data are reported over wide range of flow conditions covering slug flow and into the churn flow pattern. Comparison with the Fernandes model predictions are presented. Numerical simulation of slug flow provided information on the structure of flow in a liquid slug and, in particular, on the process of mixing behind a Taylor bubble.List of symbols D pipe diameter - f Taylor bubble frequency - F Gi (x) gas existence function for i-th liquid slug - g gravitational acceleration - l A distance for the wall shear stress reversal in a liquid slug - l B distance for the wall shear stress reversal in a Taylor bubble region - l LS length of a liquid slug - l TB length of a Taylor bubble - n number of samples in an ensemble - u axial velocity - U M superficial mixture velocity (U SG + USL) - U N translation velocity of the leading Taylor bubble - U NLS average translation velocity of liquid slugs - U NTB average translation velocity of Taylor bubbles - U OT overtaking velocity of the trailing Taylor bubble - U SG superficial gas velocity - U SL superficial liquid velocity - v radial velocity - w (y) velocity profile at the inlet to a liquid slug - x axial coordinate - y radial coordinate - void fraction - LS void fraction in a liquid slug - =l TB /(lTB + lLS) - density - surface tension - shear stress - saturation ratio, = w / g h - ensemble average  相似文献   

4.
The stability of the steady self-similar flow in the boundary layer on a rotating disk of infinite radius with corotation of the surrounding fluid is analyzed by the normal mode method. The spectral problem for infinitesimal three-dimensional disturbances is solved by a collocation method with expansion of the amplitude functions in Chebyshev polynomials. It is established that for all values of the parameter 0, equal to the ratio of the angular velocities of the fluid and the disk, the lower critical Reynolds number is determined byA-type, waves, whose development is governed by the parallel instability mechanism typical of an Ekman layer. TheB-type instability, associated with the presence of an inflection point on the velocity profile, disappears when 4. The neutral surfaces are calculated for Karman flow (=0) and Bödewadt flow (). It is found that in Karman flowA-type waves may grow at values of the Reynolds number several times smaller than the critical Reynolds number for spiral vortices. The results of the analysis are compared with the available experimental data.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.5, pp. 69–77, September–October, 1992.  相似文献   

5.
We prove the existence and uniqueness of entropy solutions of the Neumann problem for the quasilinear parabolic equation uta(u, Du), where a(z,)=f(z,), and f is a convex function of with linear growth as ||||, satisfying other additional assumptions. In particular, this class includes the case where f(z,)=(z)(), >0, and is a convex function with linear growth as ||||.  相似文献   

6.
The exact solution of the equation of motion of a circular disk accelerated along its axis of symmetry due to an arbitrarily applied force in an otherwise still, incompressible, viscous fluid of infinite extent is obtained. The fluid resistance considered in this paper is the Stokes-flow drag which consists of the added mass effect, steady state drag, and the effect of the history of the motion. The solutions for the velocity and displacement of the circular disk are presented in explicit forms for the cases of constant and impulsive forcing functions. The importance of the effect of the history of the motion is discussed.Nomenclature a radius of the circular disk - b one half of the thickness of the circular disk - C dimensionless form of C 1 - C 1 magnitude of the constant force - D fluid drag force - f(t) externally applied force - F() dimensionaless form of applied force - F 0 initial value of F - g gravitational acceleration - H() Heaviside step function - k magnitude of impulsive force - K dimensionless form of k - M a dimensionless parameter equals to (1+37#x03C0;s/4f) - S displacement of disk - t time - t 1 time of application of impulsive force - u velocity of the disk - V dimensionless velocity - V 0 initial velocity of V - V t terminal velocity - parameter in (13) - parameter in (13) - (t) Dirac delta function - ratio of b/a - () function given in (5) - dynamical viscosity of the fluid - kinematic viscosity of the fluid - f fluid density - s mass density of the circular disk - dimensionless time - i dimensionless form of t i - dummy variable - dummy variable  相似文献   

7.
In a previous derivation of Darcy's law, the closure problem was presented in terms of an integro-differential equation for a second-order tensor. In this paper, we show that the closure problem can be transformed to a set of Stokes-like equations and we compare solutions of these equations with experimental data. The computational advantages of the transformed closure problem are considerable.Roman Letters A interfacial area of the- interface contained within the macroscopic system, m2 - A e area of entrances and exits for the-phase contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A e area of entrances and exits for the-phase contained within the averaging volume, m2 - B second-order tensor used to respresent the velocity deviation - b vector used to represent the pressure deviation, m–1 - C second-order tensor related to the permeability tensor, m–2 - D second-order tensor used to represent the velocity deviation, m2 - d vector used to represent the pressure deviation, m - g gravity vector, m/s2 - I unit tensor - K C –1,–D, Darcy's law permeability tensor, m2 - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the-phase, m - l i i=1, 2, 3, lattice vectors, m - n unit normal vector pointing from the-phase toward the-phase - n e outwardly directed unit normal vector at the entrances and exits of the-phase - p pressure in the-phase, N/m 2 - p intrinsic phase average pressure, N/m2 - p p , spatial deviation of the pressure in the-phase, N/m2 - r position vector locating points in the-phase, m - r 0 radius of the averaging volume, m - t time, s - v velocity vector in the-phase, m/s - v intrinsic phase average velocity in the-phase, m/s - v phase average or Darcy velocity in the \-phase, m/s - v v , spatial deviation of the velocity in the-phase m/s - V averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 Greek Letters V /V volume fraction of the-phase - mass density of the-phase, kg/m3 - viscosity of the-phase, Nt/m2  相似文献   

8.
The behavior of supersonic mixing layers under three conditions has been examined by schlieren photography and laser Doppler velocimetry. In the schlieren photographs, some large-scale, repetitive patterns were observed within the mixing layer; however, these structures do not appear to dominate the mixing layer character under the present flow conditions. It was found that higher levels of secondary freestream turbulence did not increase the peak turbulence intensity observed within the mixing layer, but slightly increased the growth rate. Higher levels of freestream turbulence also reduced the axial distance required for development of the mean velocity. At higher convective Mach numbers, the mixing layer growth rate was found to be smaller than that of an incompressible mixing layer at the same velocity and freestream density ratio. The increase in convective Mach number also caused a decrease in the turbulence intensity ( u/U).List of symbols a speed of sound - b total mixing layer thickness between U 1 – 0.1 U and U 2 + 0.1 U - f normalized third moment of u-velocity, f u3/(U)3 - g normalized triple product of u2 , g u2/(U)3 - h normalized triple product of u 2, h u 2/(U)3 - l u axial distance for similarity in the mean velocity - l u axial distance for similarity in the turbulence intensity - M Mach number - M c convective Mach number (for 1 = 2), M c (U 1U 2)/(a 1 + a 2) - P static pressure - r freestream velocity ratio, r U 2/U 1 - Re unit Reynolds number, Re U/ - s freestream density ratio, s 2/1 - T t total temperature - u instantaneous streamwise velocity - u deviation of u-velocity, uuU - U local mean streamwise velocity - U 1 primary freestream velocity - U 2 secondary freestream velocity - average of freestream velocities, (U 1 + U 2)/2 - U freestream velocity difference, U U 1U 2 - instantaneous transverse velocity - v deviation of -velocity, V - V local mean transverse velocity - x streamwise coordinate - y transverse coordinate - y 0 transverse location of the mixing layer centerline - ensemble average - ratio of specific heats - boundary layer thickness (y-location at 99.5% of free-stream velocity) - similarity coordinate, (yy 0)/b - compressible boundary layer momentum thickness - viscosity - density - standard deviation - dimensionless velocity, (UU 2)/U - 1 primary stream - 2 secondary stream A version of this paper was presented at the 11th Symposium on Turbulence, October 17–19, 1988, University of Missouri-Rolla  相似文献   

9.
In recent years there have appeared several experimental studies [1–5] which have shown that there are cases of turbulent flow with an asymmetric distribution of the flow velocity and in which at the point where the velocity derivative is zero the turbulent shear stress is not zero. This raises the question of the connection of the Reynolds stress tensor with the characteristics of the average flow. The relationships used in the usual mixing length theory connect the shear stress with the local value of the flow velocity derivative and are not consistent with the experimental results mentioned above. These relationships are based on the assumption that the mixing length is small in comparison with the characteristic length of the flow. Experiment shows that this assumption is not justified [6].Thus, turbulent diffusion refers to the case of diffusion with a large mean free path. In addition to the concept of gradient diffusion, there is also the concept of bulk convection or integral diffusion [10], which means a transfer mechanism in which the shear stress is not expressed in terms of the velocity gradient. The generalization of mixing length theory proposed in [11–14] is based on the very simple kinetic equation which was used for the examination of turbulent transfer problems in [8] and which is encountered in the treatment of transport problems in gases, neutron diffusion, and radiative energy transfer.The proposed generalization of mixing length theory employs an analogy with the indicated processes and permits the derivation of formulas which are valid for large mean free paths. In the case of small mean free paths the obtained relationships lead to the relationships for diffusion in a continuous medium and, in particular, to the relationships of the Prandtl mixing length theory. The integral diffusion model is a phenomenological semiempirical theory in which empirical constants and several hypotheses common in mixing length theory are used. A very general analysis of the expression for the shear stress leads to the conclusion that if the flow is asymmetric over a distance comparable with the mixing length the points at which the velocity derivative and the turbulent shear stress are zero do not coincide [12]. Hence, it is to be hoped that the integral diffusion model will allow treatment of the above questions, which cause difficulty in the case of ordinary mixing length theory. Incompressible turbulent flow is considered.  相似文献   

10.
Linear and nonlinear viscoelastic properties were examined for a 50 wt% suspension of spherical silica particles (with radius of 40 nm) in a viscous medium, 2.27/1 (wt/wt) ethylene glycol/glycerol mixture. The effective volume fraction of the particles evaluated from zero-shear viscosities of the suspension and medium was 0.53. At a quiescent state the particles had a liquid-like, isotropic spatial distribution in the medium. Dynamic moduli G* obtained for small oscillatory strain (in the linear viscoelastic regime) exhibited a relaxation process that reflected the equilibrium Brownian motion of those particles. In the stress relaxation experiments, the linear relaxation modulus G(t) was obtained for small step strain (0.2) while the nonlinear relaxation modulus G(t, ) characterizing strong stress damping behavior was obtained for large (>0.2). G(t, ) obeyed the time-strain separability at long time scales, and the damping function h() (–G(t, )/G(t)) was determined. Steady flow measurements revealed shear-thinning of the steady state viscosity () for small shear rates (< –1; = linear viscoelastic relaxation time) and shear-thickening for larger (>–1). Corresponding changes were observed also for the viscosity growth and decay functions on start up and cessation of flow, + (t, ) and (t, ). In the shear-thinning regime, the and dependence of +(t,) and (t,) as well as the dependence of () were well described by a BKZ-type constitutive equation using the G(t) and h() data. On the other hand, this equation completely failed in describing the behavior in the shear-thickening regime. These applicabilities of the BKZ equation were utilized to discuss the shearthinning and shear-thickening mechanisms in relation to shear effects on the structure (spatial distribution) and motion of the suspended particles.Dedicated to the memory of Prof. Dale S. Parson  相似文献   

11.
Based on a general assumption for plastic potential and yield surface, some properties of the nonassociated plasticity are studied, and the existence and uniqueness of the distribution of incremental stress and displacement for work-hardening materials are proved by using nonsymmetric Lax-Milgram lemma, when the work-hardening parameter A>F/Q/–F/, Q/.  相似文献   

12.
Zusammenfassung Es wird dargelegt, wie man nach Einführung des bekannten Begriffes Übertragungseinheit und mit Hilfe eines Vierfelderdiagramms zu einer relativ einfachen und durchsichtigen Berechnung von Gleich- und Gegenstrom-Wärmeübertragern gelangt.
On transfer units and a four-quadrant-diagram for the calculation of heat exchangers
It is shown that the introduction of the known concept of a transfer unit and the use of a four-quadrant diagram leads to a relatively simple and clear computation method for co-current and counter-current heat exchangers.
  相似文献   

13.
The effective length method [1, 2] has been used to make systematic calculations of the heat transfer for laminar and turbulent boundary layers on slender blunt-nosed cones at small angles of attack ( + 5° in a separationless hypersonic air stream dissociating in equilibrium (half-angles of the cones 0 20°, angles of attack 0 15°, Mach numbers 5 M 25). The parameters of the gas at the outer edge of the boundary layer were taken equal to the inviscid parameters on the surface of the cones. Analysis of the results leads to simple approximate dependences for the heat transfer coefficients.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 173–177, September–October, 1981.  相似文献   

14.
The problem of heat conduction in a thin rotating disk with heat input at a fixed point is considered. The disk is cooled by forced convection from its lateral surfaces. By defining a complex temperature, the temperature throughout the disk is presented as a series of Bessel functions of complex argument. Results are given for a range of rotational speeds.Nomenclature R radial coordinate - angular coordinate - a radius of disk - b thickness of disk - T temperature - T ambient temperature - rotational speed of disk - q heat flux into disk - k thermal conductivity of disk - density of disk - c specific heat of disk - h coefficient of convective heat transfer - r dimensionless radial coordinate, R/a - T* characteristic temperature, q 0 a/ k - t dimensionless temperature, (T–T )/T* - C 1, C 2 dimensionless parameters defined in (3)  相似文献   

15.
The steady axisymmetrical laminar source flow of an incompressible conducting fluid between two circular parallel disks in the presence of a transverse magnetic field is analytically investigated. A solution is obtained by expanding the velocity and the pressure distribution in terms of a power series of 1/r. Velocity, induced magnetic field, pressure and shear stress distributions are determined and compared with the case of the hydrodynamic solution. Pressure is found to be a function of both r and z in the general case and the flow is not parallel. At high magnetic fields, the velocity distribution degenerates to a uniform core surrounded by a boundary layer near the disks.Nomenclature C f skin friction coefficient - H 0 impressed magnetic field - H r induced magnetic field in the radial direction, H r /H 0 - M Hartmann number, H 0 t(/)1/2 - P dimensionless static pressure, P*t 4/Q - P* static pressure - P 0 reference dimensionless pressure - Q source discharge - R outer radius of disks - Rm magnetic Reynolds number, Q/t - Re Reynolds number, Q/t - 2t channel width - u dimensionless radial component of the velocity, u*t 2/Q - u* radial component of the velocity - w dimensionless axial component of the velocity, w*t 2/Q - w* axial component of the velocity - z, r dimensionless axial and radial directions, z*/t and r*/t, respectively - z*, r* axial and radial direction, respectively - magnetic permeability - coefficient of kinematic viscosity - density - electrical conductivity - 2 LaPlacian operator in axisymmetrical cylindrical coordinates  相似文献   

16.
This paper presents some test and analysis results for a spot welded joint subjected to tensile and alternate load. The effect of sheet rigidity on the tensile strength and fatigue life of the spot welded joint is studied by using the stress intensity factorsK I,K II,K III and an effective stress intensity factor Kmax calculated by the finite element method for crack around the nugget. The results show that the effective stress intensity factor Kmax is an essential parameter for estimating the fatigue life of the spot welded joint.  相似文献   

17.
Summary A method developed by the author for the systematic study of the thermodynamic and dynamic properties of the gas behind a shock wave is reported.The method is applicable to supersonic flow regimes for which the excitation, dissociation and ionization effects invalidate the usually adopted hypothesis of ideal gas.An Ideal Equivalent Gas, having the ratio of the specific heats s dependent on Mach number and altitude of flight is postulated.On the basis of the mass, momentum and energy conservation equations, valid through the shock wave, the relations defining the thermodynamic and dynamic state of the gas behind the shock wave are derived. These relations establish an extension of the classic relations valid for the ideal gas and reduce to them identically for s=.The dependence of the ratio of specific heats s of the Ideal Equivalent Gas on Mach number and altitude has been established, over a wide range, on the basis of the real gas solutions derived by Huber.
Sommario Nella presente nota viene esposto un metodo sviluppato dall'autore per lo studio sistematico dello stato termodinamico e dinamico del gas a valle di un'onda d'urto in regime supersonico, allorchè cioè gli effetti dell'eccitazione dei gradi di libertà vibrazionali delle molecole e della loro dissociazione e successiva ionizzazione invalidano l'ipotesi di gas ideale generalmente adottata.Viene definito un gas ideale equivalente avente rapporto dei calori specifici s funzione del numero di Mach e della quota di volo ed in base alle equazioni di conservazione della massa, della quantità di moto e dell'energia, valide attraverso all'onda d'urto, vengono derivate delle relazioni definenti lo stato termodinamico e dinamico del gas a valle dell'onda d'urto. Tali relazioni costituiscono una estensione delle classiche relazioni dell'urto valide per il gas ideale alle quali si riducono per s=.La dipendenza del rapporto dei calori specifici s del gas ideale equivalente, dal numero di Mach e dalla quota è stata stabilita sulla base delle soluzioni ottenute da Huber per il gas reale.

  相似文献   

18.
A stress-symmetrized internal viscosity (I.V.) model for flexible polymer chains, proposed by Bazua and Williams, is scrutinized for its theoretical predictions of complex viscosity * () = – i and non-Newtonian viscosity (), where is frequency and is shear stress. Parameters varied are the number of submolecules,N (i.e., molecular weightM = NM s ); the hydrodynamic interaction,h *; and/f, where andf are the I.V. and friction coefficients of the submolecule. Detailed examination is made of the eigenvalues p (N, h *) and how they can be estimated by various approximations, and property predictions are made for these approximations.Comparisons are made with data from our preceding companion paper, representing intrinsic properties [], [], [] in very viscous theta solutions, so that theoretical foundations of the model are fulfilled. It is found that [ ()] data can be predicted well, but that [ ()] data cannot be matched at high. The latter deficiency is attributed in part to unrealistic predictions of coil deformation in shear.  相似文献   

19.
The possibility of simplifying the formulas obtained by the Maxwell-Loyalka method for the velocity u, temperature T and diffusion d slip coefficients and the temperature jump coefficient in a binary gas mixture with frozen internal degrees of freedom of the molecules is considered. Special attention is paid to gases not having sharply different physicochemical properties. The formulas are written in a form convenient for use without linearization in the thermal diffusion coefficient. They are systematically analyzed for mixtures of inert gases, N2, O2, CO2, and H2 at temperatures extending from room temperature to 2500°K. It is shown that for the molecular weight ratios m* = m2/m1 considered the expressions for u and can be radically simplified. With an error acceptable for practical purposes (up to 10%) it is possible to employ expressions of the same structural form as for a single-component gas: for u if 1 m* 6, and for if 1 m* 3. When 1 m* 2 the expression for T can be simplified with a maximum error of 5%. Within the limits of accuracy of the method the expression for t can be linearized in the thermal diffusion coefficient. An approximate expression convenient for practical calculations is proposed for d Finally, the , u, and T for a single-component polyatomic gas with easy excitation of the internal degrees of freedom of the molecules are similarly analyzed; it is shown that these expressions can be considerably simplified.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 152–159, November–December, 1990.  相似文献   

20.
It is proposed to investigate the stability of a plane axisymmetric flow with an angular velocity profile (r) such that the angular velocity is constant when r < rO – L and r > rO + L but varies monotonically from 1 to 2 near the point rO, the thickness of the transition zone being small L rO, whereas the change in velocity is not small ¦21¦ 2, 1. Obviously, as L O short-wave disturbances with respect to the azimuthal coordinate (k=m/rO 1/rO) will be unstable with a growth rate-close to the Kelvin—Helmholtz growth rate. In the case L=O (i.e., for a profile with a shear-discontinuity) we find the instability growth rate O and show that where the thickness of the discontinuity L is finite (but small) the growth rate does not differ from O up to terms proportional to kL 1 and 1/m 1. Using this example it is possible to investigate the effect of rotation on the flow stability. It is important to note that stabilization (or destabilization) of the flow in question by rotation occurs only for three-dimensional or axisymmetric perturbations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 111–114, January–February, 1985.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号