首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The synthesis and characterisation of a pyridazine-containing two-armed grid ligand L2 (prepared from one equivalent of 3,6-diformylpyridazine and two equivalents of p-anisidine) and the resulting transition metal (Zn, Cu, Ni, Co, Fe, Mn) complexes (1-9) are reported. Single-crystal X-ray structure determinations revealed that the copper(I) complex had self-assembled as a [2 x 2] grid, [Cu(I) (4)(L2)(4)][PF(6)](4).(CH(3)CN)(H(2)O)(CH(3)CH(2)OCH(2)CH(3))(0.25) (2.(CH(3)CN)(H(2)O)(CH(3)CH(2)OCH(2)CH(3))(0.25)), whereas the [Zn(2)(L2)(2)(CH(3)CN)(2)(H(2)O)(2)][ClO(4)](4).CH(3)CN (1.CH(3)CN), [Ni(II) (2)(L2)(2)(CH(3)CN)(4)][BF(4)](4).(CH(3)CH(2)OCH(2)CH(3))(0.25) (5 a.(CH(3)CH(2)OCH(2)CH(3))(0.25)) and [Co(II) (2)(L2)(2)(H(2)O)(2)(CH(3)CN)(2)][ClO(4)](4).(H(2)O)(CH(3)CN)(0.5) (6 a.(H(2)O)(CH(3)CN)(0.5)) complexes adopt a side-by-side architecture; iron(II) forms a monometallic cation binding three L2 ligands, [Fe(II)(L2)(3)][Fe(III)Cl(3)OCl(3)Fe(III)].CH(3)CN (7.CH(3)CN). A more soluble salt of the cation of 7, the diamagnetic complex [Fe(II)(L2)(3)][BF(4)](2).2 H(2)O (8), was prepared, as well as two derivatives of 2, [Cu(I) (2)(L2)(2)(NCS)(2)].H(2)O (3) and [Cu(I) (2)(L2)(NCS)(2)] (4). The manganese complex, [Mn(II) (2)(L2)(2)Cl(4)].3 H(2)O (9), was not structurally characterised, but is proposed to adopt a side-by-side architecture. Variable temperature magnetic susceptibility studies yielded small negative J values for the side-by-side complexes: J=-21.6 cm(-1) and g=2.17 for S=1 dinickel(II) complex [Ni(II) (2)(L2)(2)(H(2)O)(4)][BF(4)](4) (5 b) (fraction monomer 0.02); J=-7.6 cm(-1) and g=2.44 for S= 3/2 dicobalt(II) complex [Co(II) (2)(L2)(2)(H(2)O)(4)][ClO(4)](4) (6 b) (fraction monomer 0.02); J=-3.2 cm(-1) and g=1.95 for S= 5/2 dimanganese(II) complex 9 (fraction monomer 0.02). The double salt, mixed valent iron complex 7.H(2)O gave J=-75 cm(-1) and g=1.81 for the S= 5/2 diiron(III) anion (fraction monomer=0.025). These parameters are lower than normal for Fe(III)OFe(III) species because of fitting of superimposed monomer and dimer susceptibilities arising from trace impurities. The iron(II) centre in 7.H(2)O is low spin and hence diamagnetic, a fact confirmed by the preparation and characterisation of the simple diamagnetic iron(II) complex 8. M?ssbauer measurements at 77 K confirmed that there are two iron sites in 7.H(2)O, a low-spin iron(II) site and a high-spin diiron(III) site. A full electrochemical investigation was undertaken for complexes 1, 2, 5 b, 6 b and 8 and this showed that multiple redox processes are a feature of all of them.  相似文献   

2.
The cover picture shows how differing coordination algorithms control the molecular architecture of complexes of the pyridazine‐containing, two‐armed, acyclic Schiff base ligand L2 (left, prepared from one equivalent of 3,6‐diformylpyridazine and two equivalents of d‐anisidine). Two very different complexes of L2 self‐assemble from tetrahedral copper(I ) versus octahedral zinc(II ), nickel(II ), and cobalt(II ) controlled 1 : 1 reactions with L2. In both cases the metal ions are bridged by the pyridazine moieties in L2, but in the case of the tetrahedral copper(II ) the result is a tetrametallic [2×2] grid complex ([CuI4(L2)4]4+: top right), whilst in the case of the octahedral metal(II ) ions dimetallic side‐by‐side complexes, [MII2(L2)2(X)4]y+ (M = Mn, Co, Ni, Zn; X = solvent or anion), are formed (bottom right). The cover image was kindly generated by M. Crawford (University of Otago) with Strata Studio Pro (Strata). More details are given by S. Brooker and co‐workers on p. 3772 ff.  相似文献   

3.
Metal string complexes contain a linear metal‐atom chain in which the metal centers are coordinated by four equatorial and two axial ligands. With a variety of transition‐metal elements and ligands, the structural framework drives the flourishing of molecular design and properties. The one‐dimensional configuration makes the compounds suitable for the studies of quantum transport across molecular junctions. In this study, we report the conductance measurements and transmission spectra of three trinickel metal strings, [Ni3(dpa)4(NCS)2] ( 1 ), [Ni3(dzp)4(NCS)2] ( 2 ), and [Ni3(dpa)4(CN)2] ( 3 ) (Hdpa = dipyridylamine, Hdzp, diazaphenoxazine) in which 1 is a prototypical compound, dzp of 2 represents an equatorial ligand more rigid than dpa of 1 , and ─CN is an axial ligand with a ligand‐field effect stronger than ─NCS of 1 . Measurement results of molecular junctions for 1 , 2 , and 3 are 2.69, 3.24, and 17.4 MΩ, respectively. The highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO–LUMO) gaps calculated by density functional theory in the gas phase for 1 , 2 , and 3 are about 2.65, 2.34, and 3.85 eV, respectively. Zero‐bias transmission spectra of 1 – 3 show that transmission peaks lie just above EFermi (the Fermi energy of the gold electrode), suggesting LUMO‐dominant transport pathways. The transmission peaks at EFermi are associated with LUMO+2 found in the gas phase. LUMOs in the free space are located at nearly 1 eV below EFermi. The shift of molecular orbitals from their isolated form and the alignment of LUMO+2 with the electrode Fermi level manifest the importance and significant of the electrodes' self‐energy on electron transport.  相似文献   

4.
Treatment of P(X)(X')Cl with KC8 gave the crystalline diphosphine [P(X)X']2 (1) which dissociated reversibly into the phosphinyl radical *P(X)X' (2), a plausible intermediate in the reaction of with [Cr(CO)6], [Co(NO)(CO)3] or P4, yielding [Cr[P(X)X']2(CO)3] (3), [Co[P(X)X'](CO)3] (4), or 1,4-P4[P(X)X']2 (5); the P(X)X' substituent is pyramidal at P in but planar in [X = N(SiMe3)2, X'= NPri2].  相似文献   

5.
Azido Beryllates with Adamantan‐like Structures: Synthesis, IR Spectra, and Crystal Structures of (Ph4P)2[Be4X4(μ‐N3)6] (X = Cl, Br) The azido beryllates (Ph4P)2[Be4X4(μ‐N3)6] (X = Cl 1a , X = Br 1b ) have been prepared by the reaction of Me3SiN3 with the halogeno beryllates (Ph4P)2[Be2Cl6] and (Ph4P)2[Be2Br6], respectively, in CH2Cl2 and CH2Br2 solution, respectively. Both complexes form moisture sensitive, colourless crystals, which are nonexplosive with respect to mechanical or thermal stress. They are characterized by IR spectroscopy and by crystal structure determinations. 1a and 1b crystallize isotypically in the space group C2/c with 12 formula units per unit cell. Whereas 1a was only refined to R1 = 0.13, which is caused by disordering, 1b could be refined to R1 = 0.066. The structures contain adamantanlike dianions [Be4X4(μ‐N3)6]2— with two symmetry nonequivalent individuals which differ only slightly from one another. The Be4N6 core is formed by bridging function of the α‐nitrogen atoms of the azide groups with BeN bond lengths of 172.5 and bond lengths Nα—Nβ = 123.2 pm and Nβ—Nγ = 113.1 pm on average in the structure of 1b .  相似文献   

6.
Properties indirectly determined, or alluded to, in previous publications on the titled isomers have been measured, and the results generally support the earlier conclusions. Thus, the common five‐coordinate intermediate generated in the OH?‐catalyzed hydrolysis of exo‐ and endo‐[Co(dien)(dapo)X]2+ (X=Cl, ONO2) has the same properties as that generated in the rapid spontaneous loss of OH? from exo‐ and endo‐[Co(dien)(dapo)OH]2+ (40±2% endo‐OH, 60±2% exo‐OH) and an unusually large capacity for capturing (R=[CoN3]/[CoOH][]=1.3; exo‐[CoN3]/endo‐[CoN3]=2.1±0.1). Solvent exchange for spontaneous loss of OH? from exo‐[Co(dien)(dapo)OH]2+ has been measured at 0.04 s?1 (k1, 0.50M NaClO4, 25°) from which similar loss from the endo‐OH isomer may be calculated as 0.24 s?1 (k2). The OH?‐catalyzed reactions of exo‐ and endo‐[Co(dien)(dapo)N3]2+ result in both hydrolysis of coordinated via an OH?‐limiting process =153 M ?1 s?1; =295 M ?1 s?1; KH=1.3±0.1 M ?1; 0.50M NaClO4, 25.0°) and direct epimerization between the two reactants =33 M ?1 s?1; =110 M ?1 s?1; 1.0M NaClO4, 25.0°). Comparisons are made with other rapidly reacting CoIII‐acido systems.  相似文献   

7.
Two pentahalo(N‐donor)­bismuthate(III) salts, bis­[hydrogen bis(4‐picoline)(1+)] penta­bromo(4‐picoline‐N)bismuthate(III), (C12H15N2)2[BiBr5(C6H7N)], (I), and bis­(pyridinium) penta­chloro­(pyridine‐N)­bismuthate(III), (C5H6N)2[BiCl5(C5H5N)], (II), are described which show modest deviations from octahedral geometry at bismuth. In (I), the cations comprise two 4‐picoline mol­ecules sharing a proton and in (II), pyridinium cations are present. The anion in (I) has twofold and that in (II) has mirror crystallographic symmetry. Both structures show a layered packing formed by the anions with the cations between the layers. Ring–ring interactions seem important in (I), whilst in (II), N/­C—H?Cl—Bi hydrogen bonding is abundant.  相似文献   

8.
9.
10.
Preparation of trans-[Pt(N3)4X2]2? (X ? Br, I, SCN, SeCN) by Oxidative Addition to [Pt(N3)4]2? in Organic Solvents By oxidative addition to (TBA)2[Pt(N3)4], dissolved in dichlormethane, trans-(TBA)2[Pt(N3)4X2], X ? Br, I, SCN, SeCN; TBA = Tetrabutylammonium, are formed. The vibrational spectra of these salts are assigned according to point group D4h. From the resonance Raman spectrum of trans-(TBA)2[Pt(N3)4I2] the harmonic vibrational frequency ω1 of v(Pt? I), A1g, is calculated to be 138.50 cm?1 and the inharmonicity constant x11 = 0.27 cm?1. The characteristical feature in the UV/VIS spectra is caused by intensive π(N,X) → a1g, b1g(Pt) CT transitions.  相似文献   

11.
[NiL2X2] or [HL][NiLX3] – Reaction of Sterically Demanding Trialkylphosphines L with NiX2 (X = Cl, Br) in Ethanol The reaction of some sterically demanding trialkylphosphines L = PR2R′ (R = iPr, R′ = tBu; R = tBu, R′ = iPr, Me) with NiX2 (X = Cl, Br) in ethanol affords instead of the expected non-electrolytes [NiL2X2] tertiary phosphonium nickelates [HL][NiLX3] due to participation of the solvent. In case of the less bulky PtBu2Me both complex types were obtained. [Ni(PtBu2Me)2Cl2] is tetrahedral and therefore one of the two examples of paramagnetic bis(trialkylphosphine)dihalogenonickel(II) complexes known so far. In solution the latter compound undergoes an equilibrium of tetrahedral (paramagnetic) and planar (diamagnetic) conformer. Vis spectra as well as the results of magnetic measurements and 1H and 31P NMR investigations are reported.  相似文献   

12.
陈三平  范广  高胜利 《中国化学》2008,26(2):286-289
以1,2-反式-二(4-吡啶基)乙烯桥连卤化铜分别得到配合物[Cu2(bpe)Cl 2] n (1), [Cu2(bpe)Br2] n (2) 和 [Cu2(bpe)I2] n (3)。通过X-射线单晶衍射法对配合物1的结构进行了研究,晶体学数据:单斜晶系, P 2(1)/c空间群, a = 0.3788(8) nm, b = 1.5059(3) nm, c = 1.0875(2)nm, β = 96.262(4) °, V = 616.5(2)Å3, Z = 2, S = 1.002,最终残差因子( I >2 σ ( I )) R 1 = 0.0288, wR 2 = 0.0579,对于全部数据 R 1 = 0.0509, wR 2 = 0.0615。元素分析及红外光谱分析表明,该类配合物为同晶化合物。另外,通过热重分析对配合物的热稳定性进行了研究。  相似文献   

13.
The new ether‐bridged dipyridyl ligand 1,2‐bis[4‐(pyridin‐3‐yl)phenoxy]ethane (L) has been used to synthesize three isostructural centrosymmetric binuclear HgII macrocycles, namely bis{μ‐1,2‐bis[4‐(pyridin‐3‐yl)phenoxy]ethane‐κ2N:N′}bis[dichloridomercury(II)], [Hg2Cl4(C24H20N2O2)2], and the bromido, [Hg2Br4(C24H20N2O2)2], and iodido, [Hg2I4(C24H20N2O2)2], analogues. The Hg atoms adopt a highly distorted tetrahedral coordination environment consisting of two halides and two pyridine N‐donor atoms from two bridging ligands. In the solid state, the macrocycles form two‐dimensional sheets in the bc plane through noncovalent Hg...X and X...X (X = Cl, Br and I) interactions.  相似文献   

14.
The title compounds 3‐5 are accessible by treatment of P(C6H4CH2NMe2)3( 1 ) with CuX ( 2a : X = Cl, 2b : X = Br, 2c : X = I) in the ratio of 1:1 or 1:2 in very good yields. Reaction of 1 with equimolar amounts of 2a affords the copper(I) chloride [P(C6H4CH2NMe2)3]CuCl ( 3 ). With a further equivalent of 2a homobimetallic [P(C6H4CH2NMe2)3]Cu2Cl2 ( 4 ) is formed, which also can be synthesized by the reaction of 1 with two equivalents of 2a. Complex 3 reacts with CuX (X = Br, I)to afford [P(C6H4CH2NMe2)3]Cu2ClX ( 5a : X = Br; 5b : X = I) in which mixed halides are present. The newly synthesized complexes 3‐5 were characterized by elemental analyses, by their IR‐, 1H‐, 13C{1H}‐ and 31P{1H}‐NMR spectra as well as by mass spectrometrical studies. The solid‐state structures of complexes 3 and 4 are reported. Mononuclear 3 crystallizes in the monoclinic space group P21/c with the cell parameters a = 14.285(2), b = 10.853(2), c = 17.425(2) Å , β = 103.310(10)?, V = 2628.9(7) Å 3 and Z = 4 with 4053 observed unique reflections; R1 = 0.0314. The crystal structure of 3 consists of monomeric molecules with planar coordinated copper(I) centres (CuClNP). Homobimetallic 4 crystallizes in the monoclinic space group P21/n with a = 23.905(4), b = 10.874(3), c = 25.314(5), β = 99.130(10)?, V = 6497(2) /Aring; 3 and Z = 4 with 9021 observed unique reflections; R1 = 0.0480. In 4 one of two copper(I) centres possesses a distorted trigonal‐pyramidal environment, while the other one is almost square‐pyramidal coordinated. The Cu2Cl2 segment resembles to a building block which is set up by a contact ion pair consisting of Cu+ and [CuCl2] , respectively.  相似文献   

15.
The structures of seven A2Cu4X10 compounds containing quasi‐planar oligomers are reported: bis(1,2,4‐trimethylpyridinium) hexa‐μ‐chlorido‐tetrachloridotetracuprate(II), (C8H12N)2[Cu4Cl10], (I), and the hexa‐μ‐bromido‐tetrabromidotetracuprate(II) salts of 1,2,4‐trimethylpyridinium, (C8H12N)2[Cu4Br10], (II), 3,4‐dimethylpyridinium, (C7H10N)2[Cu4Br10], (III), 2,3‐dimethylpyridinium, (C7H10N)2[Cu4Br10], (IV), 1‐methylpyridinium, (C6H8N)2[Cu4Br10], (V), trimethylphenylammonium, (C9H14N)2[Cu4Br10], (VI), and 2,4‐dimethylpyridinium, (C7H10N)2[Cu4Br10], (VII). The first four are isomorphous and contain stacks of tetracopper oligomers aggregated through semicoordinate Cu...X bond formation in a 4(,) stacking pattern. The 1‐methylpyridinium salt also contains oligomers stacked in a 4(,) pattern, but is isomorphous with the known chloride analog instead. The trimethylphenylammonium salt contains stacks of oligomers arranged in a 4(,) stacking pattern similar to the tetramethylphosphonium analog. These six structures feature inversion‐related organic cation pairs and hybrid oligomer/organic cation layers derived from the parent CuX2 structure. The 2,4‐dimethylpyridinium salt is isomorphous with the known (2‐amino‐4‐methylpyridinium)2Cu4Cl10 structure, in which isolated stacks of organic cations and of oligomers in a 4(,) pattern are found. In bis(3‐chloro‐1‐methylpyridinium) octa‐μ‐bromido‐tetrabromidopentacuprate(II), (C6H7ClN)[Cu5Br12], (VIII), containing the first reported fully halogenated quasi‐planar pentacopper oligomer, the oligomers stack in a 5(,) stacking pattern as the highest nuclearity [CunX2n+2]2− oligomer compound known with isolated stacking. Bis(2‐chloro‐1‐methylpyridinium) dodeca‐μ‐bromido‐tetrabromidoheptacuprate(II), (C6H7ClN)2[Cu7Br16], (IX), contains the second heptacopper oligomer reported and consists of layers of interleaved oligomer stacks with a 7[(,)][(−,−)] pattern isomorphous with that of the known 1,2‐dimethylpyridinium analog. All the oligomers reported here are inversion symmetric.  相似文献   

16.
The pentacarbonylhalogene complexes [XM(CO)5] (M = Mn, Re; X = Cl, Br) ( 1a – 2b ) react with 2,2‐dimethylaziridine by thermally induced substitution reaction to give the neutral bis‐aziridine complexes [M(X)(CO)3Az2] (Az = N(H)C2H2Me2) ( 3a – 4b ). As a result of the X‐ray structure analyses, the metal atoms are octahedrally configurated in the facial arrangement; the intact three‐membered rings coordinate through their distorted tetrahedrally configurated N atoms. All compounds 3a – 4b are stable with respect to the directed thermal alkene elimination to give the corresponding nitrene complexes (CO)4(X)M=NH; their IR, 1H and 13C{1H} NMR, and MS spectra are reported and discussed.  相似文献   

17.
18.
Theoretical studies on the complexes Ru(bpy)2L2+, Ru(phen)2L2+ (L=pytp,pztp) were carried out by using the density functional theory (DFT) method at B3LYP/LanL2DZ level. The relation between electronic structures and anti-cancer activities of complexes was investigated. The increasing of N in the main ligand can strengthen the interaction of complexes with DNA and anti cancer activities of complexes. The calculation results show that for complexes I-IV, their energies of LUMO orbital are in the order of εI>εII, εIII>εIV, the electron cloud components of LUMO come mainly from main ligands and the content distributing is in the order of I相似文献   

19.
20.
Heteronuclear Metal Atom Clusters of the Types X4?n[SnM(CO)4P(C6H5)3]n and M2(CO)8[μ-Sn(X)M(CO)4P(C6H5)3]2 by Reaction of SnX2 with M2(CO)8[P(C6H5)3]2 (X = Halogene; M = Mn, Re; n = 2, 3) The compounds of the both types X4?n[SnM(CO)4P(C6H5)3]n (n = 3; M = Mn; X = F, Cl, Br, I. n = 2: M = Mn, Re; X = Cl, Br, I) and M2(CO)8[μ-Sn(X)M(CO)4P(C6H5)3]2 (M = Mn; X = Cl, I. M = Re; X = Cl, Br, I) are prepared by reaction of SnX2 with M2(CO)8[P(C6H5)3]2 (M = Mn, Re). Their IR frequencies are assigned. In Re2(CO)8[μ-Sn(Cl)Re(CO)4P(C6H5)3]2 the central molecule fragment contains a planar Re2Sn2 rhombus with a transannular Re? Re bond of 316.0(2) pm. Each of the SnIV atoms is connected with the terminal ligands Cl and Re(CO)4P(C6H5)3. These ligands are in transposition with respect to the Re2Sn2 ring. The mean values for the remaining bond distances (pm) are: Sn? Re = 274.0(3); Sn? Cl = 243(1), Re? C = 176(5), Re? P = 242.4(9), C? O = 123(5). The factors with an influence on the geometrical shape of such M2Sn2 rings (M = transition metal) are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号