首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colloidal semiconductor nanocrystals (NCs) provide convenient "building blocks" for solution-processed solar cells, light-emitting devices, photocatalytic systems, etc. The use of inorganic ligands for colloidal NCs dramatically improved inter-NC charge transport, enabling fast progress in NC-based devices. Typical inorganic ligands (e.g., Sn(2)S(6)(4-), S(2-)) are represented by negatively charged ions that bind covalently to electrophilic metal surface sites. The binding of inorganic charged species to the NC surface provides electrostatic stabilization of NC colloids in polar solvents without introducing insulating barriers between NCs. In this work we show that cationic species needed for electrostatic balance of NC surface charges can also be employed for engineering almost every property of all-inorganic NCs and NC solids, including photoluminescence efficiency, electron mobility, doping, magnetic susceptibility, and electrocatalytic performance. We used a suite of experimental techniques to elucidate the impact of various metal ions on the characteristics of all-inorganic NCs and developed strategies for engineering and optimizing NC-based materials.  相似文献   

2.
Trivalent lanthanide ions (Ln(3+)) doped inorganic nanocrystals (NCs) have currently attracted reviving interest and come to the forefront in nanophotonics owing to their potential applications in diverse fields such as luminescent biodetection and bioimaging. As an alternative to conventional biolabels, Ln(3+)-doped NCs show superior features including large stokes shift, multicolor fine-tuning, narrow emission band widths, high photostability, and low toxicity. Particularly, the long-lived luminescence and distinct upconversion (UC) of Ln(3+)-doped NCs are desirable for various bioapplications. The long-lived luminescence of Ln(3+) combined with time-resolved technique can efficiently suppress the interference from short-lived background, resulting in a high signal-to-noise ratio (S/N) and background-free measurements. Near-infrared excited UC emissions of Ln(3+) can bring no autofluorescence and no photodamage to cells or tissues, and thus UC NCs have been regarded as one of the most useful in vivo optical contrast agents. In this review, we outline the most recent development of Ln(3+)-doped NCs as biolabels from the controlled synthesis and surface functionalization of NCs to their bioapplications in heterogeneous and homogeneous biodetection as well as in vitro and in vivo bioimaging.  相似文献   

3.
Thermally activated delayed fluorescence (TADF) is generally observed in solid-state organic molecules or metal-organic complexes. However, TADF in all-inorganic colloidal nanocrystals (NCs) is rare. Herein, we report the first colloidal synthesis of an air-stable all-inorganic lead-free Cs2ZrCl6 perovskite NCs. The Cs2ZrCl6 NCs exhibit long-lived triplet excited state (138.2 μs), and feature high photoluminescence (PL) quantum efficiency (QY=60.37 %) due to TADF mechanism. The emission color can be easily tuned from blue to green by synthesizing the mixed-halide Cs2ZrBrxCl6−x (0≤x≤1.5) NCs. Femtosecond transient absorption and temperature dependent PL measurements are performed to clarify the emission mechanism. In addition, Bi3+ ions are successfully doped into Cs2ZrCl6 NCs, which further extends the PL properties. This work not only develops a new lead-free halide perovskite NCs for potential optoelectronic applications, but also offers unique strategies for developing new inorganic phosphors.  相似文献   

4.
For colloidal semiconductor nanocrystals (NCs), replacement of insulating organic capping ligands with chemically diverse inorganic clusters enables the development of functional solids in which adjacent NCs are strongly coupled. Yet controlled assembly methods are lacking to direct the arrangement of charged, inorganic cluster‐capped NCs into open networks. Herein, we introduce coordination bonds between the clusters capping the NCs thus linking the NCs into highly open gel networks. As linking cations (Pt2+) are added to dilute (under 1 vol %) chalcogenidometallate‐capped CdSe NC dispersions, the NCs first form clusters, then gels with viscoelastic properties. The phase behavior of the gels for variable [Pt2+] suggests they may represent nanoscale analogues of bridged particle gels, which have been observed to form in certain polymer colloidal suspensions.  相似文献   

5.
We report an efficient approach to assemble a variety of electrostatically stabilized all‐inorganic semiconductor nanocrystals (NCs) by their linking with appropriate ions into multibranched gel networks. These all‐inorganic non‐ordered 3D assemblies benefit from strong interparticle coupling, which facilitates charge transport between the NCs with diverse morphologies, compositions, sizes, and functional capping ligands. Moreover, the resulting dry gels (aerogels) are highly porous monolithic structures, which preserve the quantum confinement of their building blocks. The inorganic semiconductor aerogel made of 4.5 nm CdSe colloidal NCs capped with I? ions and bridged with Cd2+ ions had a large surface area of 146 m2 g?1.  相似文献   

6.
《中国化学快报》2021,32(8):2390-2394
The fascinating luminescence properties of gold nanoclusters(AuNCs) have drawn considerable research interests,and been widely harnessed for a wide range of applications.However,a fundamental understanding towards ligand density's role in the luminescence properties of these ultrasmall AuNCs remains unclear yet.In this communication,through systematic investigation of surface chemistries of glutathione-protected Au NCs(GSH-Au NCs) with diffe rent density of GSH as well as other thiolates,it is discovered that the density of surface ligands can significantly regulate the luminescence properties of AuNCs.Fluorescence lifetime spectroscopy and X-ray photoelectron spectroscopy showed that AuNCs with a higher density of electron-rich ligands facilitate their luminescence generation.Moreover,differences in the surface coverage of AuNCs can also affect their interactions with foreign species,as illustrated by significantly different fluorescence quenching capability of GSH-AuNCs with different ligand density towards Hg~(2+).This study provides new insight into the intriguing luminescence properties of metal NCs,which is hoped to stimulate further research on the design of metal NCs with strong luminescence and sensitive/specific responses for promising optoelectronic,sensing and imaging applications.  相似文献   

7.
无机铅卤钙钛矿CsPbX3(X=Cl,Br,I)纳米晶因具有较高荧光量子效率(~90%)、发光波长覆盖整个可见光谱(400~700 nm)、半高宽相对较窄(12~42 nm)等诸多优点而备受关注,这些性能使之成为当前最具有潜在应用价值的发光材料之一。 因此,近年来对该类无机铅卤钙钛矿材料的报道越来越多。 本文主要介绍了无机铅卤钙钛矿发光材料的发展历程、结构、制备方法、生长机理及当前的主要应用领域等,最后概括了无机铅卤钙钛矿发光材料在当前研究背景下所面临的问题并展望了下一阶段的发展方向,为进一步提高其光学性能及开发新型高效的无机铅卤钙钛矿发光材料奠定基础。  相似文献   

8.
The colloidal all-inorganic CsPbX3(X=I, Br, Cl) perovskite nanocrystals(NCs) with unique optical properties have attracted considerable attention in the field of semiconductor nanocrystals, but their application is hindered by stability issues caused by surface defects and environmental factors. Usually with inert layer encapsulation, the stability of CsPbX3 NCs can be significantly enhanced. However, due to the loss of highly dynamic oleic acid/oleylamine ligands, it is usually accompanied by a decrease in the photoluminescence quantum yield(PLQY). Herein, we report a facile method for preparing CsPbBr3 NCs based green phosphors with high stability and bright emission. With modification of colloidal CsPbBr3 NCs by di-dodecyldimethylammonium bromide and sequent encapsulation in the as-synthesized mesoporous MOF-5, the green emitting phosphors with enhanced stability and a PLQY of 77% were obtained. The phosphors exhibit enhanced resistance against ambient oxygen, UV light, heat treatment and water. These excellent properties show the potential value of our prepared NCs as stable phosphors in light-emitting devices.  相似文献   

9.
We report a new platform for design of soluble precursors for CuInSe(2) (CIS), Cu(In(1-x)Ga(x))Se(2) (CIGS), and Cu(2)ZnSn(S,Se)(4) (CZTS) phases for thin-film potovoltaics. To form these complex phases, we used colloidal nanocrystals (NCs) with metal chalcogenide complexes (MCCs) as surface ligands. The MCC ligands both provided colloidal stability and represented essential components of target phase. To obtain soluble precursors for CuInSe(2), we used Cu(2-x)Se NCs capped with In(2)Se(4)(2-) MCC surface ligands or CuInSe(2) NCs capped with {In(2)Cu(2)Se(4)S(3)}(3-) MCCs. A mixture of Cu(2-x)Se and ZnS NCs, both capped with Sn(2)S(6)(4-) or Sn(2)Se(6)(4-) ligands was used for solution deposition of CZTS films. Upon thermal annealing, the inorganic ligands reacted with NC cores forming well-crystallized pure ternary and quaternary phases. Solution-processed CIS and CZTS films featured large grain size and high phase purity, confirming the prospects of this approach for practical applications.  相似文献   

10.
Metal nanoclusters (NCs) are considered ideal nanomaterials for biological applications owing to their strong photoluminescence (PL), excellent photostability, and good biocompatibility. This study presents a simple and versatile strategy to design proteins, via incorporation of a di‐histidine cluster coordination site, for the sustainable synthesis and stabilization of metal NCs with different metal composition. The resulting protein‐stabilized metal NCs (Prot‐NCs) of gold, silver, and copper are highly photoluminescent and photostable, have a long shelf life, and are stable under physiological conditions. The biocompatibility of the clusters was demonstrated in cell cultures in which Prot‐NCs showed efficient cell internalization without affecting cell viability or losing luminescence. Moreover, the approach is translatable to other proteins to obtain Prot‐NCs for various biomedical applications such as cell imaging or labeling.  相似文献   

11.
Resurfacing perovskite nanocrystals (NCs) with tight-binding and conductive ligands to resolve the dynamic ligands—surface interaction is the fundamental issue for their applications in perovskite light-emitting diodes (PeLEDs). Although various types of surface ligands have been proposed, these ligands either exhibit weak Lewis acid/base interactions or need high polar solvents for dissolution and passivation, resulting in a compromise in the efficiency and stability of PeLEDs. Herein, we report a chemically reactive agent (Iodotrimethylsilane, TMIS) to address the trade-off among conductivity, solubility and passivation using all-inorganic CsPbI3 NCs. The liquid TMIS ensures good solubility in non-polar solvents and reacts with oleate ligands and produces in situ HI for surface etching and passivation, enabling strong-binding ligands on the NCs surface. We report, as a result, red PeLEDs with an external quantum efficiency (EQE) of ≈23 %, which is 11.2-fold higher than the control, and is among the highest CsPbI3 PeLEDs. We further demonstrate the universality of this ligand strategy in the pure bromide system (CsPbBr3), and report EQE of ≈20 % at 640, 652, and 664 nm. This represents the first demonstration of a chemically reactive ligand strategy that applies to different systems and works effectively in red PeLEDs spanning emission from pure-red to deep-red.  相似文献   

12.
Lanthanide nanocrystals (NCs) are the most promising luminescent materials for bioapplications, but their use is hindered by difficulties in obtaining biocompatible and photoluminescence lanthanide NCs. To solve this problem, a simple and versatile strategy was developed for improving the luminescence efficiency with the hydrophilicity of the lanthanide NCs. In this study, the effects of shell formation on structural, morphological, and optical properties (optical absorption, band-gap energy, excitation, emission, and luminescent decay time) were evaluated. To improve the luminescence efficiency and aqueous dispersion, luminescent core-NCs were encapsulated with inert NaGdF4 and amorphous silica layers. These surface coating layers significantly improved the luminescence efficiency and dispersion of the core/shell NCs in which the silica surface provides a negatively charged surface to the NCs at physiological pH. Optical properties of these NCs strongly depend on the external change of NCs, demonstrating the impact of coating in improving the luminescence efficiency. The outcomes can be ascribed to the development of surface chemical bonds between core/shell and noncrystalline SiO2 shell via GdOSi bridges, activating the ‘dormant’ Ce3+ and Tb3+ ions on the surface of NCs. An intensive emission and good hydrophilic property from the active functional groups in solutions show a great potential for applications such as multi-analyte fluorescent biolabeling, optical biosensing, staining, display, and other optical technologies. The core/shell/SiO2 NCs showed higher nontoxicity and biocompatibility with respect to the core NCs because of biocompatible silica surface modification, facilitating entry into the living cells. Therefore, this developed synthesis approach might advance the field of biomolecule-based nanotechnology in near future.  相似文献   

13.
We investigated the formation of Pt nanocubes (NCs) and their electrocatalytic oxygen reduction reaction (ORR) properties and structural stability using two different capping agents, namely, polyvinylpyrrolidone (PVP) and oleylamine (OAm). The mono-dispersity of the obtained Pt NCs and their interactions with PVP and OAm were analyzed by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Fourier-transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The TEM data show a high mono-dispersity (82 %) and a large mean particle size (9-10 nm) for the Pt NCs obtained by the oleylamine-assisted method compared to those prepared via the PVP-assisted procedure (68 %, 6–7 nm). FTIR, XPS, and TGA data show that PVP and OAm still remain at the Pt surface, despite washing. Interestingly, the OAm-capped Pt NCs show significantly higher electrochemically active surface area (ECSA) and ORR activity than the PVP-capped ones. An accelerated stress protocol, however, reveals that the OAm-capped NCs possess a poor structural stability during electrochemical cycling. The loss of a defined surface arrangement in the NCs is connected with a transformation into a near-spherical particle shape. In contrast, the PVP-capped NCs mainly retain their particle shape due to their strong capping behavior. In addition, we have developed a degradation model for NCs as a function of electrochemical parameters such as upper potential and cycle number. Altogether, we provide fundamental insights into the electronic interactions between capping agent and Pt NCs and the role of the adsorption strength of the capping agent in improving the electrochemical ORR performance as well as the structural stability of shape-controlled nanoparticles.  相似文献   

14.
Magnetic and luminescent bifunctional divalent europium nanocrystals (Eu2+ NCs) are a promising class of novel advanced materials that have various applications in magneto‐optic devices, catalysis, bioimaging, and solar cells. In the past few decades, much work has been carried out to study the synthesis, properties, and applications of Eu2+ NCs. The aim of this Minireview is to present the progress in preparing Eu2+ NCs based on the reported research, by describing the advantages and disadvantages of the synthesis methods. The morphologies and size are controlled through adjusting the experimental conditions. Eu2+ NCs show superior magnetic and luminescence properties simultaneously. Self‐assembly and doping with other ions are important routes to improve their magnetic and luminescence properties. Their applications in magneto‐optic devices are discussed. Some difficulties and challenges in the fabrication of Eu2+ NCs are discussed, such as water‐soluble Eu2+ NCs and tunable luminescence in the whole visible region.  相似文献   

15.
The ability to engineer surface properties of nanocrystals (NCs) is important for various applications, as many of the physical and chemical properties of nanoscale materials are strongly affected by the surface chemistry. Here, we report a facile ligand-exchange approach, which enables sequential surface functionalization and phase transfer of colloidal NCs while preserving the NC size and shape. Nitrosonium tetrafluoroborate (NOBF4) is used to replace the original organic ligands attached to the NC surface, stabilizing the NCs in various polar, hydrophilic media such as N,N-dimethylformamide for years, with no observed aggregation or precipitation. This approach is applicable to various NCs (metal oxides, metals, semiconductors, and dielectrics) of different sizes and shapes. The hydrophilic NCs obtained can subsequently be further functionalized using a variety of capping molecules, imparting different surface functionalization to NCs depending on the molecules employed. Our work provides a versatile ligand-exchange strategy for NC surface functionalization and represents an important step toward controllably engineering the surface properties of NCs.  相似文献   

16.
A fundamental and systematic study on the fabrication of a supramolecularly assembled nanostructure of an organic ligand-capped CdS nanocrystal (NC) and multiple heptamine β-cyclodextrin ((NH(2))(7)βCD) molecules in aqueous solution has been here reported. The functionalization process of presynthesized hydrophobic CdS NCs by means of (NH(2))(7)βCD has been extensively investigated by using different spectroscopic and structural techniques, as a function of different experimental parameters, such as the composition and the concentration of CD, the concentration of CdS NCs, the nature of the NC surface capping ligand (oleic acid and octylamine), and the organic solvent. The formation of a complex based on the direct coordination of the (NH(2))(7)βCD amine groups at the NC surface has been demonstrated and found responsible for the CdS NC phase transfer process. The amine functional group in (NH(2))(7)βCD and the appropriate combination of pristine capping agent coordinating the NC surface and a suitable solvent have been found decisive for the success of the CdS NC phase transfer process. Furthermore, a layer-by-layer assembly experiment has indicated that the obtained (NH(2))(7)βCD functionalized CdS NCs are still able to perform the host-guest chemistry. Thus, they offer a model of a nanoparticle-based material with molecular receptors, useful for bio applications.  相似文献   

17.
In this study, surface‐functionalized, branched polyethylenimine (BPEI)‐modified YVO4:Bi3+,Eu3+ nanocrystals (NCs) were successfully synthesized by a simple, rapid, solvent‐free hydrothermal method. The BPEI‐coated YVO4:Bi3+,Eu3+ NCs with high crystallinity show broad‐band excitation in the λ=250 to 400 nm near‐ultraviolet (NUV) region and exhibit a sharp‐line emission band centered at λ=619 nm under excitation at λ=350 nm. The surface amino groups contributed by the capping agent, BPEI, not only improve the dispersibility and water/buffer stability of the BPEI‐coated YVO4:Bi3+,Eu3+ NCs, but also provide a capability for specifically targeted biomolecule conjugation. Folic acid (FA) and epidermal growth factor (EGF) were further attached to the BPEI‐coated YVO4:Bi3+,Eu3+ NCs and exhibited effective positioning of fluorescent NCs toward the targeted folate receptor overexpressed in HeLa cells or EGFR overexpressed in A431 cells with low cytotoxicity. These results demonstrate that the ligand‐functionalized, BPEI‐coated YVO4:Bi3+, Eu3+ NCs show great potential as a new‐generation biological luminescent bioprobe for bioimaging applications. Moreover, the unique luminescence properties of BPEI‐coated YVO4:Bi3+,Eu3+ NCs show potential to combine with a UVA photosensitizing drug to produce both detective and therapeutic effects for human skin cancer therapy.  相似文献   

18.
Capping ligands are indispensable for the preparation of metal-halide-perovskite (MHP) nanocrystals (NCs) with good stability; however, the long alkyl-chain capping ligands in conventional MHP NCs will be unfavorable for CO2 adsorption and hinder the efficient carrier separation on the surface of MHP NCs, leading to inferior catalytic activity in artificial photosynthesis. Herein, CsPbBr3 nanocrystals with short-chain glycine as ligand are constructed through a facile ligand-exchange strategy. Owing to the reduced hindrance of glycine and the presence of the amine group in glycine, the photogenerated carrier separation and CO2 uptake capacity are noticeably improved without compromising the stability of the MHP NCs. The CsPbBr3 nanocrystals with glycine ligands exhibit a significantly increased yield of 27.7 μmol g−1 h−1 for photocatalytic CO2-to-CO conversion without any organic sacrificial reagents, which is over five times higher than that of control CsPbBr3 NCs with conventional long alkyl-chain capping ligands.  相似文献   

19.
《Analytical letters》2012,45(17):2657-2672
This paper presents an overview of the applications of sensitized fluorescence in chemiluminescence. The enhancement of fluorescence of lanthanide ions after formation of stable complexes with organic molecules (type A luminescence) or of organic molecules after formation of stable complexes with inorganic ions (type B luminescence) has been extensively applied for the sensitive determination of a wide variety of analytes but not thoroughly investigated for chemiluminescence applications. As chemiluminescent reactions can be used successfully for the excitation of fluorophores, all sensitized fluorescing complexes are expected to be excited by these reactions. The analytical applications of sensitized fluorescence in chemiluminescence are briefly discussed and presented. Suggestions for further work are also included.  相似文献   

20.
The luminescence porous materials of CdTe or CdSe nanocrystals (NCs) were prepared by filling the corresponding NCs into the voids of colloidal crystal by co-deposition of polymer beads and NCs. After removing the beads with tetrahydrofuran (THF), the 3D-ordered porous materials of CdTe (or CdSe) NCs were obtained. The wavelength of maximum photoluminescence of the NCs porous material shows obvious red shift compared with their aqueous dispersion. Under the excitation of high-energy electron the porous materials of CdTe and CdSe NCs will emit photons that can be collected to form a cathode luminescence (CL) image.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号