首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 434 毫秒
1.
Organic solvent-free mobile-phase systems in ion-pair reversed-phase partition high-performance liquid chromatography (IPRP-HPLC) are demonstrated; using urea at 3.0-7.0 molal (mol kg-1) as a modifier in a mobile phase on an octadecylsilanized silica column, four nitrophenolates and metal 4-(2-pyridilazo)resorcinol (PAR) chelates (in PAR chelates system an aqueous mobile phase with 15 wt% methanol was used) were separated rapidly within 6 min at no sacrifice to the separation efficiency. On the addition of urea in the mobile phase, reduced retention times of nitrophenolates and naphthalenesulfonates and also diminution of the height equivalent to a theoretical plate were observed. The addition of urea and guanidium chloride (GuCl) in the mobile phase gave rise to a decrease in the mobile phase volume; in turn, this meant an increased volume of the stationary phase. As the concentration of urea and GuCl in the mobile phase increased, the volume of the mobile phase in the column decreased within about 70% and 40% at 7.0 molal of urea and GuCl, respectively. A decrease in the mobile phase volume suggests an increase in the extent of solvation of the bonded hydrocarbon chain of the stationary phase. The possible explanations for the LC behavior with the urea and GuCl are turned into reduction of hydrophobic interaction in LC processes, solute partitioning and entangling of alkyl chain brushes, with the addition of urea. The water structure breakers, urea and GuCl, most likely affect the solvation states of both solute molecules and the hydrocarboneous stationary phase by changing the nature of the water solvent, which provides a new technique for fine tuning of the LC resolution of the analytes.  相似文献   

2.
Wu H  Wang P  Hu X  Dai Z  Zou X 《Talanta》2011,84(3):881-886
A convenient method is proposed for precise investigation of the asynchronous structural transition of the domains in bovine serum albumin (BSA) during unfolding process. The method is based on a site-selective probe, alizarin red S (ARS), which has a high affinity to the subdomain IIA of BSA. BSA-ARS complex was formed and gradually unfolded by urea from 0 to 8.0 M. The unfolding occurred in different domains of BSA resulted in distinct alterations of the microenvironment of the bound ARS. The spectral response of BSA-ARS complex, including the color, the UV absorption at 530 and 432 nm, and the intrinsic fluorescence at 342 and 310 nm with the excitation wavelength of 280 nm, showed slight changes in the urea concentration from 0 to 4.5 M, drastic changes from 4.5 to 6.0 M, and almost no changes from 6.0 to 8.0 M. The redox behavior of bound ARS between 0.3 and 0.8 V also showed the same trend. Consequently, a two-step, three-state transition process was monitored by naked eyes, UV-vis spectroscopy and electrochemistry. It is the first report to realize the indicator of the intermediate state during the unfolding process of BSA through convenient methods instead of expensive approaches. The work provides a facile method for the investigation of the unfolding process of multidomain proteins.  相似文献   

3.
    
Proteins that perform other functions elsewhere appear to be recruited for structural purposes in the eye lens. The lens being a tissue with very little metabolic activity and little or no turnover, the lens proteins, crystallins, are long lived. In an effort to understand whether their recruitment might be related to their conformation and structural stability, we have examined these features of the avian lens protein δ-crystallin. The native molecule is a tetramer (molecular mass 200 kDa) that is highly α-helical in conformation, and with an unusually blue tryptophan fluorescence (315,325 nm), which is only partially quenched by conventional quenchers. We show that the fluorescence doublet arises due to Trp residues that are effectively buried inside the rigid hydrophobic core of the tetrameric aggregate. The protein is heat stable up to 91°C. Guanidinium chloride (GuHCl) effects the complete denaturation of δ-crystallin, whereas heat or urea treatment results in only partial unfolding or dissociation. The initial transition is the disruption of the quaternary structure by perturbing the intersubunit interactions, leading to exposure of hydrophobic contact surfaces (as monitored by extrinsic probe fluorescence). This initial transition is seen upon heating to 60°C as well as in 1 M GuHCl and 4 M urea. We show that in 2.2 M GuHCl the molecule is swollen but is still largely helical with the Trp residues being present in a somewhat more polar environment than in the native molecule. Beyond 4 M GuHCl there is a gradual unfolding of the molecule, which is complete in 6 M GuHCl. This structural robustness of δ-crystallin might be important in its recruitment as the core protein of the avian lens. Dedicated to Professor C N R Rao on his sixtieth birthday.  相似文献   

4.
The folding/unfolding transitions of a series of designed consensus tetratricopeptide repeat proteins are quantitatively described by the classical one-dimensional Ising model, which thus represents a new folding paradigm for repeat proteins. Moreover, for the first time for any protein, a theoretical model predicts the folding/unfolding transition midpoint and the width of the transition.  相似文献   

5.
We report a novel method for the extraction of alpha-1 antitrypsin (AAT) from plasma. This method uses an anion-exchange column and two metal chelate columns. The AAT is recovered in a 60% yield and a purity of over 90%. The AAT manufactured by this method was stable at 4 degrees C for 12 months without any stabilisers. Other proteins of therapeutic value and commercial interest are recoverable in good yields. The simplicity of this process makes it a suitable alternative to the traditionally employed ethanol precipitation method where high ethanol levels inactivate AAT.  相似文献   

6.
The design and total chemical synthesis of a monomeric native-like four-helix bundle protein is presented. The designed protein, GTD-Lig, consists of 90 amino acids and is based on the dimeric structure of the de novo designed helix-loop-helix GTD-43. GTD-Lig was prepared by the native chemical ligation strategy and the fragments (45 residues long) were synthesized by applying standard fluorenylmethoxycarbonyl (Fmoc) chemistry. The required peptide-thioester fragment was prepared by anchoring the free gamma-carboxy group of Fmoc-Glu-allyl to the solid phase. After chain elongation the allyl moiety was orthogonally removed and the resulting carboxy group was functionalized with a glycine-thioester followed by standard trifluoroacetic acid (TFA) cleavage to produce the unprotected peptide-thioester. The structure of the synthetic protein was examined by far- and near-UV circular dichroism (CD), sedimentation equilibrium ultracentrifugation, and NMR and fluorescence spectroscopy. The spectroscopic methods show a highly helical and native-like monomeric protein consistent with the design. Heat-induced unfolding was studied by tryptophan absorbance and far-UV CD. The thermal unfolding of GTD-Lig occurs in two steps; a cooperative transition from the native state to an intermediate state and thereafter by noncooperative melting to the unfolded state. The intermediate exhibits the properties of a molten globule such as a retained native secondary structure and a compact hydrophobic core. The thermodynamics of GuHCl-induced unfolding were evaluated by far-UV CD monitoring and the unfolding exhibited a cooperative transition that is well-fitted by a two-state mechanism from the native to the unfolded state. GTD-Lig clearly shows the characteristics of a native protein with a well-defined structure and typical unfolding transitions. The design and synthesis presented herein is of general applicability for the construction of large monomeric proteins.  相似文献   

7.
A new model used to calculate the free energy change of protein unfolding is presented.In this model,proteins are considered to be composed of structural elements.The unfolding of a structural element obeys a two-state mechanism and the free energy change of the element can be obtained by a linear extrapolation method.If a protein consists of the same structural elements,its unfolding will displays a two-state process,and only the average structural element free energy change < △G 0 element(H2O)> can be measured.If protein consists of completely different structural elements,its unfolding will show a multi-state behavior.When a protein consists of n structural elements its unfolding will shows a(n+1)-state behavior.A least-squares fitting can be used to analyze the contribution of each structural element to the protein and the free energy change of each structural element can be obtained by using linear extrapolation to zero denaturant concentration,not to the start of each transition.The measured △G0 protein(H2 O) is the sum of the free energy change for each structural element.Using this new model,we can not only analyze the stability of various proteins with similar structure and similar molecular weight,which undergo multi-state unfolding processes,but also compare the stability of proteins with different structures and molecular weights using the average structural element free energy change < △G0 element(H2O)>.Although this method cannot completely provide the exact free energy of proteins,it is better than current methods.  相似文献   

8.
Alpha-1-antitrypsin (AAT) and alpha-1-acid glycoprotein (AAG) are reported to be the main proteins contributing to the alpha-1-globulin capillary zone electrophoresis (CZE) zone, but the sum (AAT + AAG) showed lower than the alpha-1-globulin. We investigated the role of high-density lipoprotein (HDL), an additional protein migrating in the alpha-1-globulin zone, as a possible cause for such a gap. In a set of 98 sera we measured the alpha-1-globulin with a dedicated clinical capillary electrophoresis system, and AAT, AAG and apolipoprotein A-1 (ApoA) by immunonephelometry. The alpha-1-globulin were consistently higher than the sum (AAT + AAG), by (mean value +/- standard deviation) 1.70 +/- 0.88 g/L in 49 sera with low ApoA, and by 3.59 +/- 0.75 g/L in 49 sera with high ApoA. Corresponding figures in the comparison alpha-1-globulin/(AAT + AAG + ApoA) were reduced to 1.08 +/- 0.77 g/L and 1.67 +/- 0.70 g/L. It is concluded that HDL significantly contribute to the CZE alpha-1-globulin zone, but do not completely explain the differences between the electrophoretic and the immunochemical measurements. However, CZE alpha-1-globulin measurements give information about increases of the two major acute phase proteins comparable to specific protein measurements.  相似文献   

9.
Matrix-assisted laser desorption/ionisation mass spectrometry was used to monitor interaction between three proteins and two basic Immobiline chemicals (pK 10.3 and pK >12) commonly used in immobilised pH gradients (IPG). For two of the investigated proteins, the observed alkylation channels of the cysteine residues exhibited unmistakable response to their gradual denaturation following treatment with different concentrations (0-8 M) of two commonly used denaturants, urea and guanidine hydrochloride. Our assessment for protein unfolding is based on the number and relative intensity of the alkylation channels, yet the present mass spectrometry data are in good agreement with data based on optical rotatory dispersion, in which another approach was used to assess protein unfolding. Whether the present simple, fast and specific mass spectrometry method can be developed as a probe for monitoring folding/unfolding of cysteine-containing proteins can only be demonstrated by generating similar data for a larger number of proteins.  相似文献   

10.
Free-solution capillary zone electrophoresis (CZE) can be used to monitor folding/unfolding transitions of proteins and to construct the classical sigmoidal transition curve describing this isomerization process. By performing a series of CZE experiments along the pH scale (here between pH 2.5 and 6.0) it is possible to measure the parameter [urea]1/2, which represents the concentration of urea at the midpoint of each transition curve, and its dependence from the local pH value. The [urea]1/2 parameter provides an idea of the stability of the protein at a given pH; in the case of cytochrome c, for example, it shows that at and below pH 2 the protein will spontaneously unfold even in the absence of a denaturant. The equation describing the sigmoidal folding/unfolding transition can be used for deriving the term deltaG degrees, which refers to the intrinsic difference in the Gibb's free energy between the (total or partial) denatured state and the reference state, taken usually as the native configuration of a protein. The variation of deltaG degrees between the two extremes of our measurements (pH 2.5 and 6.0) along the stated pH interval has been measured (and theoretically calculated) to be of the order of 7-10 kcal/mol and is here interpreted by assuming that at pH 2.5 and below there is an additionally stretching of the polypeptide coil due to coulombic repulsion, as the unfolded chain looses its zwitterionic character and assumes a pure (or very nearly so) cationic surface. Given the minute amounts of sample required, the fully automated state of the analysis, the rapidity and ease of operation, it is hoped that the CZE technique will become more and more popular in the years to come for monitoring folding/unfolding transitions of proteins.  相似文献   

11.
脲和盐酸胍诱导溶菌酶去折叠的荧光相图法研究   总被引:13,自引:0,他引:13  
杨芳  梁毅  杨芳 《化学学报》2003,61(6):803-807
用荧光相图法分别研究了脲和盐酸胍诱导卵清溶菌酶去抓叠的过程。当变性体 系中无还原剂2-巯基乙醇存在、脲浓度从0变化至4.0 mol/L(或盐酸胍浓度从0变 化至3.0 mol/L)时,溶菌酶从天然态转变为部分折叠中间态,当脲浓度从4.0 mol/L变化至8.0 mol/L(或盐酸胍浓度从3.0 mol/L变化至6.0 mol/L)时,溶菌 酶从中间态转变为去折叠态,此时该蛋白的变性过程符合“三态模型”。而当变性 体系中有该还原剂存在时,溶菌酶则由天然态直接转变为去折叠态,此时脲诱导该 蛋白去折叠的过程符合曲型的“二态模型”。实难结果表明荧光相图法可以检测蛋 白南去抓叠的中间态。  相似文献   

12.
Streblin, a serine proteinase from plant Streblus asper, has been used to investigate the conformational changes induced by pH, temperature, and chaotropes. The near/far UV circular dichroism activities under fluorescence emission spectroscopy and 8-aniline-1-naphthalene sulfonate (ANS) binding have been carried out to understand the unfolding of the protein in the presence of denaturants. Spectroscopic studies reveal that streblin belongs to the α+β class of proteins and exhibits stability towards chemical denaturants, guanidine hydrochloride (GuHCl). The pH-induced transition of this protein is noncooperative for transition phases between pH 0.5 and 2.5 (midpoint, 1.5) and pH 2.5 and 10.0 (midpoint, 6.5). At pH 1.0 or lower, the protein unfolds to form acid-unfolded state, and for pH 7.5 and above, protein turns into an alkaline denatured state characterized by the absence of ANS binding. At pH 2.0 (1 M GuHCl), streblin exists in a partially unfolded state with characteristics of a molten globule state. The protein is found to exhibit strong and predominant ANS binding. In total, six different intermediate states has been identified to show protein folding pathways.  相似文献   

13.
We propose a new type of transition network for modeling of protein dynamics. The nodes of the network correspond to the conformations taken from random sampling of equilibrium ensemble available, e.g., by Monte Carlo simulations. Although this approach does not provide absolute values of folding/unfolding rates, it allows identification of reaction pathways, transition state ensemble, and, eventually, intermediates. The new method is verified by a comparison with direct molecular dynamic simulations performed for a coarse-grained Gō-like model of proteins. As an illustrative example, we analyze kinetics of formation of a small β-hairpin (Trp zipper 1) in the all-atom representation.  相似文献   

14.
Lacking a stable tertiary structure, intrinsically disordered proteins (IDPs) possess particular functions in cell regulation, signaling, and controlling pathways. The study of their unique structural features, thermal stabilities, and folding kinetics is intriguing. In this study, an identified IDP, securin, was used as a model protein. By using a quasi-static five-step (on-path) folding process, the function of securin was restored and analyzed by isothermal titration calorimetry. Fluorescence spectroscopy and particle size analysis indicated that securin possessed a compact hydrophobic core and particle size. The glass transition of securin was characterized using differential scanning microcalorimetry. Furthermore, the folding/unfolding rates (kobs) of securin were undetectable, implying that the folding/unfolding rate is very fast and that the conformation of securin is sensitive to solvent environmental change. Therefore, securin may fold properly under specific physiological conditions. In summary, the thermal glass transition behavior and undetectable kobs of folding/unfolding reactions may be two of the indices of IDP.  相似文献   

15.
Motivated by the recent experimental atomic force microscopy (AFM) measurements of the mechanical unfolding of proteins pulled in different directions [D. J. Brockwell et al., Nat. Struct. Biol. 10, 731 (2003); M. Carrion-Vazquez et al., ibid 10, 738 (2003)] we have computed the unfolding free energy profiles for the ubiquitin domain when it is stretched between its (A) N and C termini, (B) Lys48 and C terminus, (C) Lys11 and C terminus, and (D) N terminus and Lys63. Our results for cases (A) and (B) are in good agreement with the experimental unfolding forces measured for the N-C and Lys48-C linked polyubiquitin, in particular, indicating a considerably lower unfolding force in the latter case. Mechanical unfolding in case (A) involves longitudinal shearing of the terminal parallel strands while in case (C) the same strands are "unzipped" by the force. The computed unfolding forces in case (C) are found to be very low, less than 50 pN for pulling rates typical of AFM experiments. The unfolding free energy barrier found in case (C) is approximately 13 kcal/mol, which corresponds to a zero-force unfolding rate constant that is comparable to the rate of chemical unfolding extrapolated to zero denaturant concentration. The unfolding barrier calculated in case (A) in the limit of zero force is much higher, suggesting that mechanical unfolding in this case follows a pathway that is different from that of thermal/chemical denaturation.  相似文献   

16.
The mechanisms of pyridoxal 5'-phosphate (PLP)-dependent enzymes require substrates to form covalent "external aldimine" intermediates, which absorb light strongly between 410 and 430 nm. Aspartate aminotransferase (AAT) is a prototypical PLP-dependent enzyme that catalyzes the reversible interconversion of aspartate and α-ketoglutarate with oxalacetate and glutamate. From kinetic isotope effects studies, it is known that deprotonation of the aspartate external aldimine C(α)-H bond to give a carbanionic quinonoid intermediate is partially rate limiting in the thermal AAT reaction. We show that excitation of the 430-nm external aldimine absorption band increases the steady-state catalytic activity of AAT, which is attributed to the photoenhancement of C(α)-H deprotonation on the basis of studies with Schiff bases in solution. Blue light (250 mW) illumination gives an observed 2.3-fold rate enhancement for WT AAT activity, a 530-fold enhancement for the inactive K258A mutant, and a 58600-fold enhancement for the PLP-Asp Schiff base in water. These different levels of enhancement correlate with the intrinsic reactivities of the C(α)-H bond in the different environments, with the less reactive Schiff bases exhibiting greater enhancement. Time-resolved spectroscopy, ranging from femtoseconds to minutes, was used to investigate the nature of the photoactivation of C(α)-H bond cleavage in PLP-amino acid Schiff bases both in water and bound to AAT. Unlike the thermal pathway, the photoactivation pathway involves a triplet state with a C(α)-H pK(a) that is estimated to be between 11 and 19 units lower than the ground state for the PLP-Val Schiff base in water.  相似文献   

17.
An electrospray ionisation (ESI) mass spectrometric method for the determination of the free energy (DeltaG) of unfolding of proteins is described. The method was tested using three blue copper proteins: wild type azurin, Cys-3Ala/Cys-26Ala (C3A/C26A) azurin mutant and wild-type amicyanin. The time course of the denaturation process of the proteins dissolved in methanol/water (50:50, v/v, pH 3.5) was followed by recording ESI mass spectra at time intervals. The spectra showed two series of peaks, corresponding to the native holo-protein and the unfolded apo-protein. From the intensity ratio of these two series of peaks at increasing time and at equilibrium, the free energy for the unfolding process for the three proteins could be determined. To evaluate the reliability of the thermodynamic data obtained by the ESI mass spectrometric approach, the denaturation process was followed by UV-VIS spectroscopy. The two sets of data obtained by these independent methods were in good agreement indicating that the ESI-MS approach can be used to obtain reliable quantitative information about the protein unfolding process. In principle, this approach can be applied to other proteins and requires very low amounts of sample, due to the intrinsic sensitivity of mass spectrometry. This may prove particularly useful when the amount of sample available prevents the use of current methods.  相似文献   

18.
The cystic fibrosis transmembrane conductance regulator (CFTR) gene is influenced by the fundamental cellular processes like epithelial differentiation/polarization, regeneration and epithelial–mesenchymal transition. Defects in CFTR protein levels and/or function lead to decreased airway surface liquid layer facilitating microbial colonization and inflammation. The SERPINA1 gene, encoding alpha1-antitrypsin (AAT) protein, is one of the genes implicated in CF, however it remains unknown whether AAT has any influence on CFTR levels. In this study we assessed CFTR protein levels in primary human lung epithelial cells grown at the air-liquid-interface (ALI) alone or pre-incubated with AAT by Western blots and immunohistochemistry. Histological analysis of ALI inserts revealed CFTR- and AAT-positive cells but no AAT-CFTR co-localization. When 0.5 mg/mL of AAT was added to apical or basolateral compartments of pro-inflammatory activated ALI cultures, CFTR levels increased relative to activated ALIs. This finding suggests that AAT is CFTR-modulating protein, albeit its effects may depend on the concentration and the route of administration. Human lung epithelial ALI cultures provide a useful tool for studies in detail how AAT or other pharmaceuticals affect the levels and activity of CFTR.  相似文献   

19.
Thermal unfolding (or folding) in many proteins occurs in an apparent two-state manner, suggesting that only two states, unfolded and folded, are populated. At the melting temperature, Tm, the two states coexist. Using lattice models with side chains we show that individual residues become structured at temperatures that deviate from Tm, which implies that partially folded conformations make substantial contribution to thermodynamic properties of two-state proteins. We also find that the folding cooperativity for a given residue is linked to its accessible surface area. These results are consistent with the experiments on GCN4-like zipper peptide, which showed that local melting temperatures differ from Tm. Analysis of thermal unfolding of six proteins shows that deltaT/Tm approximately N(-1), where deltaT is the transition width and N is the number of residues. This scaling allows us to conclude that, when corrected for finite size effects, folding cooperativity can be captured using coarse grained models.  相似文献   

20.
In this paper we try to perform a thermodynamic analysis of the temperature-induced transition from the molten globule to the unfolded state of globular proteins. A series of calorimetric investigations showed that this process is not associated with an excess heat capacity absorption peak, and cannot be regarded as a first-order phase transition. This result contrasts with the well-established conclusion that the thermal unfolding of the native tertiary structure of globular proteins is a first-order phase transition. First, the theoretical approach developed by Ikegami is outlined to emphasize that a second-order or gradual transition induced by temperature is expected for globular proteins when the various secondary structure elements do not interact cooperatively. Secondly, a simple thermodynamic model is presented which, taking into account the independence of the secondary structure elements among each other, is able to rationalize the shape of the experimental DSC profiles.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号