首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
G. N. Dudin 《Fluid Dynamics》1991,26(3):409-414
The results of calculating the three-dimensional boundary layer on a plane delta wing of finite length in the intermediate hypersonic interaction regime are presented. The effect of the hypersonic interaction parameter on the gas flow in the boundary layer and the aerodynamic characteristics is investigated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 110–116, May–June, 1991.  相似文献   

2.
The propagation of perturbations in the three-dimensional boundary layer on a planar delta wing in a hypersonic gas stream is investigated in the strong viscid-inviscid interaction regime. A characteristic associated with the induced pressure is found and an integral relation determining the velocity of its propagation is obtained. The directional diagrams of the propagation velocity of the characteristic surface in the boundary layer are determined for a series of constitutive parameters. This makes it possible to calculate the perturbation propagation velocities in the boundary layer when the velocity profiles in the longitudinal and transverse directions are known.  相似文献   

3.
The thin shock layer method [1–3] has been used to solve the problem of hypersonic flow past the windward surface of a delta wing at large angles of attack, when the shock wave is detached from the leading edge (but attached to the apex of the wing) and the velocity of the gas in the shock layer is of the same order as the speed of sound. A classification of the regimes of flow past a delta wing at large angles of attack has been made. A general solution has been obtained for the problem of three-dimensional hypersonic flow past the wing allowing for nonequilibrium physicochemical processes of thermal radiation of the gas at high temperatures.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 149–157, May–June, 1985.  相似文献   

4.
A method is proposed for calculating the three-dimensional boundary layer on a delta wing in a regime of strong viscous interaction with the exterior hypersonic flow. The results of numerical solution of a boundary-value problem are given.  相似文献   

5.
The variational problem of the shape of a low-aspect-ratio wing with maximum lift-to-drag ratio in a viscous hypersonic stream is formulated with allowance for the flow structure in the thin compressed layer and the state of the boundary layer, and a numerical-analytic solution of the problem is given. The characteristic shapes of optimum wings are obtained together with the corresponding pressure distributions. The bifurcation of the optimum regime with variation of the wing span is found to exist. It is shown that viscosity, when included in the optimization procedure, can result in a change in the optimized wing shape and reduce the maximum lift-to-drag ratio; however, the gain in lift-to-drag ratio, as compared with the limiting Newtonian value, is still quite appreciable.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 154–164, November–December, 1995.  相似文献   

6.
G. N. Dudin 《Fluid Dynamics》1998,33(4):512-518
The influence of intense surface cooling on the parameters of a laminar boundary layer flow on a thin delta wing in a hypersonic viscous perfect-gas stream is studied for the strong viscous-inviscid interaction regime. The effect of the power-law shape of the wing cross-section and the wing thickness to boundary-layer displacement thickness ratio on the local and total aerodynamic characteristics is numerically investigated. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 57–64, July–August, 1998.  相似文献   

7.
The paper is a mathematical study of the three-dimensional flow of viscous gas in a hypersonic boundary layer that develops along a flat wing whose leading edge has a step shape. The flow interacts with a flap on the wing set at a small angle. A linear solution to the problem is constructed under the assumption that the deflection angle of the flap is small and the difference between the length of the plates is of order unity. It is shown that an important part in the formation of the flow near and behind the flap may be played by the change in the pressure along the span of the wing due to the step shape of the leading edge. It is significant that although the pressure and displacement thickness are continuous functions of the transverse coordinate, the longitudinal and transverse components of the friction force have discontinuities.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 19–26, March–April, 1991.I thank V. V. Sychev and A. I. Ruban for suggesting the problem, for valuable advice, and assistance.  相似文献   

8.
G. N. Dudin 《Fluid Dynamics》2002,37(2):328-335
The effect of mass transfer on the parameters of the laminar boundary layer flow on a cold delta wing in a hypersonic viscous perfect-gas flow is investigated for the case of a strong viscous-inviscid interaction regime. The influence of the mass transfer intensity on the supercritical-subcritical transition coordinate and the local and total aerodynamic parameters of a delta wing with a power-law cross-section is numerically determined.  相似文献   

9.
A study is made of the flow of a compressible gas in a laminar boundary layer on swept-back wings of infinite span in a supersonic gas flow at different angles of attack. The surface is assumed to be either impermeable or that gas is blown or sucked through it. For this flow and an axisymmetric flow an analytic solution to the problem is obtained in the first approximation of an integral method of successive approximation. For large values of the blowing or suction parameters, asymptotic solutions are found for the boundary layer equations. Some results of numerical solution of the problem obtained by the finite-difference method are given for wings of various shapes in a wide range of angles characterizing the amount by which the wings are swept back and also the blowing or suction parameters. A numerical solution is obtained for the equations of the three-dimensional mixing layer formed in the case of strong blowing of gas from the surface of the body. The analytic and numerical solutions are compared and the regions of applicability of the analytic expressions are estimated. On the basis of the solutions obtained in the present paper and studies of other authors a formula is proposed for the calculation of the heat fluxes to a perfectly catalytic surface of swept-back wings in a supersonic flow of dissociated and ionized air at different angles of attack. Flow over swept-back wings at zero angle of attack has been considered earlier (see, for example, [1–4]) in the theory of a laminar boundary layer. In [5], a study was made of flow over swept-back wings at nonzero angle of attack at small and moderate Reynolds numbers in the framework of the theory of a hypersonic viscous shock layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 27–39, May–June, 1980.We thank G. A. Tirskii for a helpful discussion of the results.  相似文献   

10.
G. N. Dudin 《Fluid Dynamics》1982,17(5):693-698
The results are given of the calculation of a three-dimensional boundary layer on a triangular plate of finite length in a regime of strong viscous interaction with an external hypersonic stream for both symmetric flow as well as in the presence of an angle of slip. The influence of the change in the pressure on the trailing edge of the plate on the boundary layer characteristics is investigated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 46–52, September–October, 1982.  相似文献   

11.
Results of an experimental study of a supersonic flow around the leeward side of a delta wing are presented. The experiments are performed on three delta wings with leading–edge sweep angles = 68°, 73°, and 78° for Mach numbers M =2—4 and angles of attack = 0—22°. Data on the structure and position of internal shock waves are obtained; the size and location of primary and secondary vortices are found. New regimes of the flow around a delta wing are identified. The chart of flow regimes around delta wings is refined and extended.  相似文献   

12.
In recent years a considerable number of studies have been published on flow around wings at high supersonic velocities. The researches have been conducted in two directions: there are studies of hypersonic flow around wings of traditional shape and a search is carried out for new types of lay-out which possess optimal aerodynamic characteristics. The second direction relates to the numerous studies of flow around wings with shaped transverse cross sections [1–7]. The calculation of the aerodynamic quality of a shaped delta wing composed of plane surfaces on the basis of the relationships on an oblique shock [1, 2], from the results of experiments on the pressure distribution and from weight tests [3, 4], showed that the shaped wing has a higher quality than the plane delta wing.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 171–175, January–February, 1985.  相似文献   

13.
In the framework of the locally self-similar approximation of the Navier-Stokes equations an investigation is made of the flow of homogeneous gas in a hypersonic viscous shock layer, including the transition region through the shock wave, on wings of infinite span with rounded leading edge. The neighborhood of the stagnation line is considered. The boundary conditions, which take into account blowing or suction of gas, are specified on the surface of the body and in the undisturbed flow. A method of numerical solution of the problem proposed by Gershbein and Kolesnikov [1] and generalized to the case of flow past wings at different angles of slip is used. A solution to the problem is found in a wide range of variation of the Reynolds numbers, the blowing (suction) parameter, and the angle of slip. Flow past wings with rounded leading edge at different angles of slip has been investigated earlier only in the framework of the boundary layer equations (see, for example, [2], which gives a brief review of early studies) or a hypersonic viscous shock layer [3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 150–154, May–June, 1984.  相似文献   

14.
In view of the problems involved in the design of hypersonic aircraft great interest has arisen in recent years as to the behavior of wings in fast supersonic flows. Two main approaches have been used: a study of hypersonic flow around traditional wings, and a search for new configurations with optimum aerodynamic properties. Aerodynamic [1, 2], heat-transfer [3], and stability investigations (for V-shaped wings in super- and hypersonic flows) belong to the latter category. Before attaining supersonic flight the aircraft has to overcome the range of subsonic velocities. In this connection it is important to study flow around V-shaped wings at M < 1. Little research has been devoted to flow around such configurations at subsonic velocities, principal attention having been directed at the study of rapid flow around aircraft configurations with V-shaped wings or tails. The results of analytical and numerical calculations allowing for the interference of transient aerodynamic forces acting on a V-shaped and mutiple-fin tail group in combination with the fuselage were presented in [4, 5]. An experimental study of V-shaped wings as regards the influence of the wing dihedral angle on the aerodynamic characteristics of a model aircraft was presented in [6, 7].Translated from Zhurnal Prikladnoi Mekhaniki i Technicheskoi Fiziki, No. 4, pp. 102–106, July–August, 1975.  相似文献   

15.
In a formulation analogous to [1–3], a study is made of the flow of a uniform homogeneous hypersonic ideal gas over the windward side of a slender wing whose surface profile depends on the time. The problem is solved by the thin shock layer method [4]. The bow shock is assumed to be attached to the leading edge of the wing at at least one point. The corrections of the first approximation to the main Newtonian flow are found. For wings of finite aspect ratio, when the bow shock is attached along the whole of the leading edge of the wing, computational formulas are obtained for determining the parameters of the gas in the shock layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 94–101, July–August, 1979.  相似文献   

16.
The theory of a thin shock layer [1–3] is used to obtain a formula for calculating the component of the vorticity in the direction of the flow on a wing of small aspect ratio in a hypersonic gas stream. It is shown that for definite shapes of the wing and flow regimes zones may occur with large local values of the vorticity, which, as is well known, have a significant influence on the structure of the flow field.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 175–178, September–October, 1980.  相似文献   

17.
The problem of hypersonic flow over blunt delta wings is considered. It is shown that in the case of large wing lengths x -100, where x is the longitudinal coordinate measured in blunt nose radii, extremal flow regimes characterized by an essentially nonuniform distribution of the gas dynamic parameters (density, entropy, Mach number) may be realized in the shock layer near the windward surface of the wing. The location of the zones of flow convergence or divergence on the surface of a delta wing with sweep angle x=75° is established. For the same wing the ranges of Mach numbers M and angles of attack leading to extremal flow regimes are indicated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, 178–181, March–April, 1991.  相似文献   

18.
The calculation of supersonic flow past three-dimensional bodies and wings presents an extremely complicated problem, whose solution is made still more difficult in the case of a search for optimum aerodynamic shapes. These difficulties made it necessary to simplify the variational problems and to use the simplest dependences, such as, for example, the Newton formula [1–3]. But even in such a formulation it is only possible to obtain an analytic solution if there are stringent constraints on the thickness of the body, and this reduces the three-dimensional problem for the shape of a wing to a two-dimensional problem for the shape of a longitudinal profile. The use of more complicated flow models requires the restriction of the class of considered configurations. In particular, paper [4] shows that at hypersonic flight velocities a wing whose windward surface is concave can have the maximum lift-drag ratio. The problem of a V-shaped wing of maximum lift-drag ratio is also of interest in the supersonic velocity range, where the results of the linear theory of [5] or the approximate dependences of the type of [6] can be used.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 128–133, May–June, 1986.We note in conclusion that this analysis is valid for those flow regimes for which there are no internal shock waves in the shock layer near the windward side of the wing.  相似文献   

19.
A study is made of the three-dimensional flow of a viscous gas around a flat plate with an inflection in the generator of the leading edge in the case of strong interaction between the exterior hypersonic flow and the boundary layer. Numerical solutions to the problem are obtained. It is shown that near points of inflection of the profile of the leading edge of a flat wing strong self-induced secondary flows can be formed together with associated local peaks of the heat fluxes and the friction.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 40–45, May–June, 1980.  相似文献   

20.
Laminar boundary layer flow over an infinite-span, finite-length flat plate is investigated in the regime of strong interaction with a hypersonic gas flow. Under the assumption that an additional condition dependent on the transverse coordinate can be imposed on the trailing edge of the plate the flow functions are expanded in power series in the vicinity of the leading edge. It is shown that these expansions include an indefinite function dependent on the transverse coordinate. The corresponding boundary value problems are formulated and solved and the eigenvalues are determined. It is established that in this case the two-dimensional boundary layer can rearrange itself into a three-dimensional boundary layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号