首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
A yolk–shell-structured sphere composed of a superparamagnetic Fe3O4 core and a carbon shell (Fe3O4@HCS) was etched from Fe3O4@SiO2@carbon by NaOH, which was synthesized through the layer-by-layer coating of Fe3O4. This yolk–shell composite has a shell thickness of ca. 27 nm and a high specific surface area of 213.2 m2 g?1. Its performance for the magnetic removal of tetracycline hydrochloride from water was systematically examined. A high equilibrium adsorption capacity of ca. 49.0 mg g?1 was determined. Moreover, the adsorbent can be regenerated within 10 min through a photo-Fenton reaction. A stable adsorption capacity of 44.3 mg g?1 with a fluctuation <10% is preserved after 5 consecutive adsorption–degradation cycles, demonstrating its promising application potential in the decontamination of sewage water polluted by antibiotics.  相似文献   

2.
A carbon paste electrode (CPE) modified with Fe3O4 nanoparticles (Fe3O4 NP) and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (IL BMI.PF6) was employed for the electroanalytical determination of estrone (E1) by square-wave voltammetry (SWV). At the modified electrode, cyclic voltammograms of E1 in B–R buffer (pH 12.0) showed an adsorption-controlled irreversible oxidation peak at around +0.365 V. The anodic current increased by a factor of five times and the peak potential shifted 65 mV to less positive values compared with the unmodified CPE. Under optimized conditions, the calibration curve obtained showed two linear ranges: from 4.0 to 9.0 μmol L?1 and from 9.0 to 100.0 μmol L?1. The limits of detection (LOD) and quantification (LOQ) attained were 0.47 and 4.0 μmol L?1, respectively. The proposed modified electrode was applied to the determination of E1 in pork meat samples. Data provided by the proposed modified electrode were compared with data obtained by UV–vis spectroscopy. The outstanding performance of the electrochemical device indicates that Fe3O4 NP and the IL BMI.PF6 are promising materials for the preparation of chemically modified electrodes for the determination of E1.  相似文献   

3.
Rice husks (RHs), a kind of biowastes, are firstly hydrothermally pretreated by HCl aqueous solution to achieve promising macropores, facilitating subsequently impregnating ferric nitrate and urea aqueous solution, the precursor of Fe3O4 nanoparticles. A Fe3O4/rice husk-based maco-/mesoporous carbon bone nanocomposite is finally prepared by the high-temperature hydrothermal treatment of the precursor-impregnated pretreated RHs at 600 °C followed by NaOH aqueous solution treatment for dissolving silica and producing mesopores. The macro-/mesopores are able to provide rapid lithium ion-transferring channels and accommodate the volumetric changes of Fe3O4 nanoparticles during cycling as well. Besides, the macro-/mesoporous carbon bone can offer rapid electron-transferring channels through directly fluxing electrons between Fe3O4 nanoparticles and carbon bone. As a result, this nanocomposite delivers a high initial reversible capacity of 918 mAh g?1 at 0.2 A g?1 and a reversible capacity of 681 mAh g?1 remained after 200 cycles at 1.0 A g?1. The reversible capacities at high current densities of 5.0 and 10.0 A g?1 still remain at high values of 463 and 221 mAh g?1, respectively.  相似文献   

4.
Summary The adsorption of 99Tc on the adsorbers Fe, Fe2O3 and Fe3O4 was studied by batch experiments under aerobic and anoxic conditions. The effects of pH and CO32- concentration of the simulated ground water on the adsorption ratios were also investigated, and the valences of Tc in solution after the adsorption equilibrium were studied by solvent extraction. The adsorption isotherms of TcO4- on the adsorbers Fe, Fe2O3 and Fe3O4 were determined. Experimental results have shown that the adsorption ratio of Tc on Fe decreases with the increase of pH in the range of 5-12 and increases with the decrease of the CO32- concentration in the range of 10-8M-10-2M. Under aerobic conditions, the adsorption ratios of 99Tc on Fe2O3 and Fe3O4 were not influenced by pH and CO32-concentration. When Fe was used as adsorbent, Tc existed mainly in the form of Tc(IV) after equilibrium and in the form of Tc(VII) when the adsorbent was Fe2O3 or Fe3O4 under aerobic conditions. The adsorption ratios of Tc on Fe, Fe2O3 and Fe3O4 decreased with the increase of pH in the range of 5-12 and increased with the decrease of the CO32- concentration in the range of 10-8M-10-2M under anoxic conditions. Tc existed mainly in the form of Tc(IV) after equilibrium when Fe, Fe2O3 and Fe3O4 was the adsorbent under anoxic conditions. The adsorption isotherms of TcO4- on the adsorbers Fe, Fe2O3 and Fe3O4 are fairly in agreement with the Freundlich’s equation under both aerobic and anoxic conditions.  相似文献   

5.
Sandwich-structured C@Fe3O4@C hybrids with Fe3O4 nanoparticles sandwiched between two conductive carbon layers have attracted more and more attention owing to enhanced synergistic effects for lithium-ion storage. In this work, an environment-friendly procedure is developed for the fabrication of sandwich-like C@Fe3O4@C dodecahedrons. Zeolitic imidazolate framework (ZIF-8)-derived carbon dodecahedrons (ZIF-C) are used as the carbon matrix, on which iron precursors are homogeneously grown with the assistance of a polyelectrolyte layer. The subsequent polydopamine (PDA) coating and calcination give rise to the formation of sandwiched ZIF-C@Fe3O4@C. When being evaluated as the anode material for lithium-ion batteries, the obtained hybrid manifests a high reversible capacity (1194 mAh g?1 at 0.05 A g?1), good high-rate behavior (796 mAh g?1 at 10 A g?1), and negligible capacity loss after 120 cycles.  相似文献   

6.
A hemoglobin (Hb)-modified electrode based on chitosan/Fe3O4 nanocomposite coated glassy carbon has been constructed for trichloroacetic acid (TCA) detection. The structure of chitosan/Fe3O4 nanocomposite was investigated using energy-dispersive X-ray analysis (EDS) and X-ray diffraction (XRD) patterns. The electron transfer rate constant (k s) of Hb was estimated for as high as 3.12 s?1. The immobilized Hb exhibited excellent electro-catalytic activity toward the reduction of TCA. The response current regressed to the concentration of TCA within the range of 5.70 μM to 205 μM with a detection limit of 1.9 μM (S/N = 3).  相似文献   

7.
A H3PW12O40/ZrO2 catalyst for effective dimethyl carbonate (DMC) formation via methanol carbonation was prepared using the sol–gel method. X-ray photoelectron spectra showed that reactive and dominant (63%) W(VI) species, in WO3 or H2WO4, enhanced the catalytic performances of the supported ZrO2. The mesoporous structure of H3PW12O40/ZrO2 was identified by nitrogen adsorption–desorption isotherms. In particular, partial sintering of catalyst particles in the duration of methanol carbonation caused a decrease in the Brunauer–Emmett–Teller surface area of the catalyst from 39 to 19 m2/g. The strong acidity of H3PW12O40/ZrO2 was confirmed by the desorption peak observed at 415 °C in NH3 temperature-programmed desorption curve. At various reaction temperatures (T?=?110, 170, and 220 °C) and CO2/N2 volumetric flow rate ratios (CO2/N2?=?1/4, 1/7, and 1/9), the calculated catalytic performances showed that the optimal methanol conversion, DMC selectivity, and DMC yield were 4.45, 89.93, and 4.00%, respectively, when T?=?170 °C and CO2/N2?=?1/7. Furthermore, linear regression of the pseudo-first-order model and Arrhenius equation deduced the optimal rate constant (4.24?×?10?3 min?1) and activation energy (Ea?=?15.54 kJ/mol) at 170 °C with CO2/N2?=?1/7 which were favorable for DMC formation.  相似文献   

8.
This work focussed on the optical, magnetic and photocatalytic properties of sol–gel-synthesized Fe3O4-doped ZnO nanospheres and was compared with pristine ZnO nanospheres. The crystalline phase of Fe3O4-doped ZnO nanospheres was studied with X-ray diffraction analysis and was well matched with standard pattern. Surface morphology was studied with HR-SEM images and EDAX spectrum. Furthermore, elemental mapping analysis was carried out to confirm the presence of Fe3O4 phase in Fe3O4-doped ZnO nanospheres. FT-Raman spectral studies show that a strong intense peak at 670 cm?1 indicates the presence of Fe3O4 in Fe3O4-doped ZnO nanospheres. The mean crystallite size of Fe3O4-doped ZnO nanospheres was 34 nm as calculated by Debye–Scherrer’s formula which confirmed with HR-TEM image. The SAED pattern shows the presence of (100), (101), (102) and (202) of ZnO phase and (400) of Fe3O4 phase, confirming the crystalline nature of Fe3O4-doped ZnO nanospheres. The vibrating sample magnetometer (VSM) result shows that Fe3O4-doped ZnO nanospheres possess superparamagnetic nature and the composite nanospheres are magnetically separable. The optical properties have been studied by diffuse reflectance spectroscopy and time-resolved photoluminescence spectra. Implantation of Fe3O4 in ZnO nanospheres modifies the UV absorption edge, and it displays near-band gap emission and deep-level emission. The photocatalytic activity of Fe3O4-doped ZnO nanospheres studied against rhodamine B dye is found higher than that of pristine ZnO nanospheres which shows that Fe3O4-doped ZnO nanospheres are a promising photocatalyst.  相似文献   

9.
Magnetic solid-phase extraction based on Fe3O4/graphene oxide nanocomposites was investigated for the separation, preconcentration and determination of imatinib and doxorubicin in aqueous solutions. Synthesis of Fe3O4/graphene oxide was characterized by transmission electron microscopy, energy-dispersive X-ray analyzer and vibrating sample magnetometer. After optimizing the conditions, optimal experimental conditions including sample pH, the amount of the magnetic nanoparticles, the effect of salt concentration and other chemotherapy medications, eluent type and extraction time were studied and established. The method showed good linearity for the determination of doxorubicin and imatinib in the concentration range of 0.01–100 μg mL?1 in aqueous solutions with limit of detection 1.8 ng mL?1 for doxorubicin and 1.9 ng mL?1 for imatinib. The relative recoveries of doxorubicin and imatinib levels were 96.7 and 88.4%, respectively. The results indicate that the present procedure is a suitable method for extraction of imatinib and doxorubicin from environmental water samples.  相似文献   

10.
Thiol-functionalized Fe3O4/SiO2 microspheres (Fe3O4/SiO2-SH) with high saturation magnetization (69.3 emu g–1), superparamagnetism, and good dispersibility have been prepared by an ethylene glycol reduction method in combination with a modified Stöber method. The as-prepared composite magnetic spheres are characterized with fourier transform infrared spectroscopy (FT-IR), zeta potential, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and superconducting quantum interference magnetometer, and tested in separation of Au(III) ions from aqueous solutions. The data for Au(III) adsorption on Fe3O4/SiO2-SH are analyzed with the Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models, and the pseudo-first-order, pseudo-second-order, and intraparticle diffusion kinetics models. The adsorption behaviors of Au(III) on Fe3O4/SiO2-SH follow the Langmuir isotherm model, and the adsorption process conforms to the pseudo-second-order kinetic model. The maximum adsorption capacity of Au(III) on Fe3O4/SiO2-SH is 43.7 mg g–1. Acetate anions play an important role yet Cu(II) ions have little interference in the adsorption of Au(III) on the adsorbent. A satisfactory recovery percentage of 89.5% is acquired by using an eluent with 1 M thiourea and 5% HCl, although thiols have a high affinity to Au(III) ions based on the hard-soft acid-base (HSAB) theory by Pearson.  相似文献   

11.
A nanocomposite composed of graphene oxide and magnetite (Fe3O4) was coated with the ionic liquid (IL) 1,3-didecyl-2-methylimidazolium chloride and used to capture and separate hemin from serum samples. The critical parameters affecting the extraction of analyte, such as pH, surfactant and adsorbent amounts, and desorption conditions were studied and optimized. Following magnetic separation and desorption with a 5:1 mixture of acetic acid and acetone, hemin (an iron porphyrin complex) was quantified by FAAS of iron. Under optimum conditions, the enrichment factor was 96. The calibration curve was linear in the 4.8 to 730 μg L?1 concentration range, the limit of detection was 3.0 μg L?1, and the relative standard deviations (RSDs) for single-sorbent repeatability and sorbent-to-sorbent reproducibility were less than 3.9 % and 10.2 % (n = 5), respectively. The adsorbent displayed adsorption capacity as high as 200 mg g?1, indicating IL-coated Fe3O4/GO to be a good sorbent for the adsorption of hemin. The method was validated by determining serum hemin in the presence of a large excess (480-fold) of Fe3+ without considerable interference. The results compare well to those obtained with a commercial hemin assay kit. The results show that this method can be successfully applied to the enrichment and determination of hemin in acid digested serum samples of breast cancer patients.
Graphical abstract Fe3O4/GO nanocomposites were coated with the ionic liquid 1,3-didecyl-2-methylimidazolium chloride and used as the sorbent for the separation and preconcentration of hemin from blood serum samples prior to determination using by flame AAS.
  相似文献   

12.
A new type of graphene-Co3O4 functionalized porphyrin was synthesized and used for selective and sensitive detection of methyl parathion (MP). Co3O4 nanoparticles were firstly modified onto graphene oxide sheets and the porphyrin/Co3O4/graphene nanocomposites were then synthesized by self-assembly decoration of anion porphyrin on Co3O4-modified graphene sheets by π–π stacking. By dexterously controlling the electrochemical reduction variables and optimizing the electrode preparation parameters, with the satisfactory conductivity, strong adsorption toward MP, the developed novel sensor fabricated with the as-synthesized nano-assembly for determination of MP shows some satisfactory properties such as a wide linear concentration range (from 4.0?×?10?7 M to 2.0?×?10?5 M), low detection limit (1.1?×?10?8 M), favorable repeatability, long-time storage stability, and satisfactory anti-interference ability. It also had high precision for the real sample analysis, which indicated the good perspective for field application.  相似文献   

13.
Fe@Fe2O3 core-shell nanowires were synthesized via the reduction of Fe3+ ions by sodium borohydride in an aqueous solution with a subsequent heat treatment to form Fe2O3 shell and employed as a cathode catalyst for non aqueous Li-air batteries. The synthesized core-shell nanowires with an average diameter of 50–100 nm manifest superior catalytic activity for oxygen evolution reaction (OER) in Li-O2 batteries with the charge voltage plateau reduced to ~3.8 V. An outstanding performance of cycling stability was also achieved with a cutoff specific capacity of 1000 milliampere hour per gram over 40 cycles at a current density of 100 mA g?1. The excellent electrochemical properties of Fe@Fe2O3 as an O2 electrode are ascribed to the high surface area of the nanowires’ structure and high electron conductivity. This study indicates that the resulting iron-containing nanostructures are promising catalyst in Li-O2 batteries.  相似文献   

14.
The study of superparamagnetic Fe3O4/Ag nanocomposites have received great research attention due to their wide range of potential applications in biomedicine. In this report, an easy microemulsion reaction was employed to synthesis Fe3O4/Ag nanocomposites with self-aggregated branch like nanostructures. The Fe3O4 nanoparticles were initially prepared and subsequently AgNO3 was reduced as Ag by chemical reduction method. The results showed that the average size of the Fe3O4/Ag nanocomposites were in the range of 10 ± 2 nm. These nanoparticles were self-aggregated as a branch like nanostructure. The optical properties of Fe3O4 nanoparticles were modified with surface plasmon resonance of Ag nanoparticles. The observed saturation magnetization of superparamagnetic Fe3O4/Ag nanocomposites were 40 emu/g.  相似文献   

15.
A highly efficient and visible light (λ ≥ 420 nm) responsive composite photocatalyst, Co3O4/FeWO4 was prepared by simple impregnation method. The heterojunction semiconductors Co3O4/FeWO4 demonstrated notably high photocatalytic activity over a wide range of composition than the individual component Co3O4 or FeWO4 for the complete degradation of 1,4-dichlorobenzene (DCB) in aqueous phase under visible light irradiation. The photocatalytic activity of composite was optimized at 1/99 Co3O4/FeWO4 composition. After 2 h of visible light irradiation 51% decomposition of 1,4-dichlorobenzene (DCB) was observed utilizing 1/99 Co3O4/FeWO4 photocatalyst while the end members demonstrated a negligible degradation under the same experimental condition. The valence band (VB) and conduction band (CB) of Co3O4 is located above the VB and CB of FeWO4, respectively. Both the semiconductors Co3O4 and FeWO4 exhibit strong absorption over the wide range of visible light. The obviously enhanced photocatalytic performance of Co3O4/FeWO4 composite has been discussed on the hole (h+) as well as electron (e?) transfer mechanism between the VB and CB of individual semiconductors.  相似文献   

16.
In this work, we report the synthesis of magnetic sulfur-doped Fe3O4 nanoparticles (Fe3O4:S NPs) with a novel simple strategy, which includes low temperature multicomponent mixing and high temperature sintering. The prepared Fe3O4:S NPs exhibit a much better adsorption performance towards Pb(II) than bare Fe3O4 nanoparticles. FTIR, XPS, and XRD analyses suggested that the removal mechanisms of Pb(II) by Fe3O4:S NPs were associated with the process of precipitation (formation of PbS), hydrolysis, and surface adsorption. The kinetic studies showed that the adsorption data were described well by a pseudo second-order kinetic model, and the adsorption isotherms could be presented by Freundlich isotherm model. Moreover, the adsorption was not significantly affected by the coexisting ions, and the adsorbent could be easily separated from water by an external magnetic field after Pb(II) adsorption. Thus, Fe3O4:S NPs are supposed to be a good adsorbents for Pb(II) ions in environmental remediation.  相似文献   

17.
Based on the modulated electronic properties of Fe3O4-graphene (Fe3O4/GN composite) as well as the outstanding complexation between Pb2+ and natural substances garlic extract (GE), a novel electrochemical sensor for the determination of Pb2+ in wastewater was prepared by immobilization of Fe3O4/GN composite integrated with GE onto the surface of glassy carbon electrode (GCE). Fe3O4/GN composite was employed as an electrochemical active probe for enhancing electrical response by facilitating charge transfer while GE was used to improve the selectivity and sensitivity of the proposed sensor to Pb2+ assay. The electrochemical sensing performance toward Pb2+ was appraised by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and square wave voltammetry (SWV). Under the optimized condition, the sensor exhibited two dynamic linear ranges (LDR) including 0.001 to 0.5 nM and 0.5 to 1000 nM with excellent low detection limit (LOD) of 0.0123 pM (S/N =?3) and quantification limit (LOQ) of 0.41 pM (S/N =?10). Meanwhile, it displayed remarkable stability, reproducibility (RSD of 3.61%, n =?3), and selectivity toward the assay for the 100-fold higher concentration of other heavy metal ions. Furthermore, the novel sensor has been successfully employed to detect Pb2+ from real water samples with satisfactory results.  相似文献   

18.
Self-supported and binder-free electrodes based on homogeneous Co3O4/TiO2 nanotube arrays enhanced by carbon layer and oxygen vacancies (Co3O4/co-modified TiO2 nanotube arrays (m-TNAs)) are prepared via a simple and cost-effective method in this paper. The highly ordered TNAs offer direct pathways for electron and ion transport and can be used as 3D substrate for the decoration of electroactive materials without any binders. Then, by a facile one-step calcination process, the electrochemical performance of the as-obtained carbon layer and oxygen vacancy m-TNAs is approximately 83 times higher than that of pristine TNAs. In addition, Co3O4 nanoparticles are uniformly deposited onto the m-TNAs by a universal chemical bath deposition (CBD) process to further improve the supercapacitive performance. Due to the synergistic effect of m-TNAs and Co3O4 nanoparticles, a maximum specific capacitance of 662.7 F g?1 can be achieved, which is much higher than that of Co3O4 decorated on pristine TNAs (Co3O4/TNAs; 166.2 F g?1). Furthermore, the specific capacitance retains 86.0 % of the initial capacitance after 4000 cycles under a high current density of 10 A g?1, revealing the excellent long-term electrochemical cycling stability of Co3O4/m-TNAs. Thus, this kind of heterostructured Co3O4/m-TNAs could be considered as promising candidates for high-performance supercapacitor electrodes.  相似文献   

19.
We have studied LiFePO4/C nanocomposites prepared by sol-gel method using lauric acid as a surfactant and calcined at different temperatures between 600 and 900 °C. In addition to the major LiFePO4 phase, all the samples show a varying amount of in situ Fe2P impurity phase characterized by x-ray diffraction, magnetic measurements, and Mössbauer spectroscopy. The amount of Fe2P impurity phase increases with increasing calcination temperature. Of all the samples studied, the LiFePO4/C sample calcined at 700 °C which contains ~15 wt% Fe2P shows the least charge transfer resistance and a better electrochemical performance with a discharge capacity of 136 mA h g?1 at a rate of 1 C, 121 mA h g?1 at 10 C (~70 % of the theoretical capacity of LiFePO4), and excellent cycleability. Although further increase in the amount of Fe2P reduces the overall capacity, frequency-dependent Warburg impedance analyses show that all samples calcined at temperatures ≥700 °C have an order of magnitude higher Li+ diffusion coefficient (~1.3?×?10?13 cm2 s?1) compared to the one calcined at 600 °C, as well as the values reported in literature. This work suggests that controlling the reduction environment and the temperature during the synthesis process can be used to optimize the amount of conducting Fe2P for obtaining the best capacity for the high power batteries.  相似文献   

20.
In this work, we report the development of novel amino-functionalized Fe3O4 hybrid microspheres adsorbent from a facial and one-step solvothermal route by using FeCl3·6H2O as a single iron source and 3-aminophenoxy-phthalonitrile as ource of amino groups. During solvothermal process, the nitrile groups of 3-aminophenoxy-phthalonitrile would bond with the Fe3O4 through the phthalocyanine cyclization reaction to form the amino-functionalized Fe3O4 magnetic nano-material, which was confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermo-gravimetric analyzer (TGA). From the scanning electron microscope (SEM) and transmission electron microscopy (TEM) observation, the resulting monodispersed amino-functionalized Fe3O4 hybrid microspheres with the diameters of 180–200 nm were synthesized via the self-assembly process. More importantly, as-prepared Fe3O4 nano-materials with abundant amino groups exhibited high separation efficiency when they were used to remove the Cu(II) from aqueous solutions. Furthermore, the adsorption isotherms of Fe3O4 nano-material for Cu(II) removal fitted the Langmuir isotherm model, in which the calculated maximum adsorption capacity could increase from 5.51 to 16.25 mg g–1 at room temperature. This work demonstrated that the amino-functionalized Fe3O4 magnetic nano-materials were promising as efficient adsorbents for the removal of heavy metal ions from wastewater in low concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号