首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.

Radon, thoron and their progeny are responsible for more than 50% of the total ionizing radiation dose received by human population. In the present work, radon, thoron and their progeny concentration measurements have been carried out in 150 dwellings in different villages of Faridabad district of Haryana, India. Pin-holes based twin cup dosimeter containing LR-115 type-II film (solid state nuclear track detectors) has been used for the time-integrated passive measurement of radon and thoron concentrations. The dosimeters were deployed for three seasons each having 4 months of exposure period. For measurement of radon and thoron progeny concentration (EERC/EETC), deposition based direct radon/thoron progeny sensors (DRPS/DTPS) were deployed with dosimeters. Based on the gamma exposure rate in different villages during preliminary survey and type of houses available in the regions, numbers of dwellings of different categories have been selected. Radon, thoron and their progeny concentration and total annual effective inhalation dose were calculated and compared with the recommended limits by UNSCEAR, ICRP and WHO.

  相似文献   

2.
A new portable type cascade impactor has been developed to determine the activity size distribution of radon and thoron progeny in a natural environment more efficiently. The modified impactor consists of 4 stages with a back up filter stage for the collection of aerosol samples. The aerosol cut points in the impactor are set for 10, 2.5, 1 and 0.5 μm at a flow rate of 4 L min?1. Five CR-39 chips were used as alpha detectors for each stage. In order to separate α particles emitted from radon and thoron progeny, CR-39 detectors are covered with aluminum-vaporized Mylar films. The thickness of each film is adjusted to allow α particles emitted from radon and thoron progeny to reach the CR-39 detectors. The technique has been successfully tested in field studies, particularly inside a mineral treatment industry in Thailand to estimate doses in the working environment. The dose calculations by lung dose evaluation program showed that activity median aerodynamic diameters played a significant role in determining the particle size distributions of the attached radon and thoron progeny. The dose conversion factor determined from short term measurements due to exposure from the inhalation of thoron and its progeny was found to be 4 times higher than comparable values for radon and its progeny. The effective dose for workers exposed to radon is about 4–6 times higher than thoron.  相似文献   

3.
The radiation dose due to inhalation of radon, thoron and their progenies constitute a major part (50 %) of the total natural background dose received by a man. Thus measurement of indoor radon in dwellings is very important. In the present study, radon, thoron and their decay product measurements were carried out using passive detector systems, namely the pinholes dosimeters and Direct Radon (Thoron) progeny sensors. These measurements were carried out in indoor environments (different dwelling types) during January–April 2013 for 90 days, in the Gogi region. The time-averaged mean radon, thoron and decay product concentrations were found to be within the permissible UNSCEAR limits.  相似文献   

4.
Measurement of concentration of radon and thoron daughter products in various indoor environment covering four seasons of a year in Udagamandalam Taluk of Nilgiris biosphere has been carried out using a high volume air sampler to asses the inhalation dose to the population which delivers higher dose than the radon and thoron gas alone. The potential alpha-energy concentrations of the radon and thoron progeny ranged from 0.97 to 12.72 mWL and from 1.63 to 15.83 mWL with a geometric mean of 6.02 and 7.89 mWL, respectively, taking all seasons into account. These measurements have yielded a wealth of data on the variation among the indoor radon and thoron progeny in various places during different seasons. The radon and thoron progeny levels are higher in winter seasons and are less in summer season with autumn and spring data lie in between winter and summer. Using the dose conversion factor for indoor exposures given in UNSCEAR 93 report the internal equivalent dose to the inhalation of radon progeny is evaluated to be 1357 mSv.y–1 and the corresponding annual effective dose equivalent value has been found to be 2.13 mSv.y–1. It can be observed that the mean value of radon is higher than the Indian average. Also it is found the radon and thoron progeny levels are higher in the case of houses built with rock and granite and in tiled type houses of nearly 100 years old. The levels are less in the case of houses built with brick and cement. The observed results for different types of houses and seasons are discussed in this paper.  相似文献   

5.
Twin cup pin-hole dosimeters having LR-115 as the detector were used to measure the concentration of radon and thoron in the dwellings of Firozabad city of Uttar Pradesh State in India. The mean values of radon, thoron, radon progeny and thoron progeny concentrations were found to be 37.4 Bqm?3, 13.7 Bqm?3, 4.0 and 1.5 mWL respectively. The average value of annual effective dose equivalent to the inhabitants of Firozabad city was found to be 1.1 mSv and is below the action level as recommended by the ICRP.  相似文献   

6.
Inhalation of radon, thoron and their decay products can cause a significant health hazard when present in enhanced levels in the indoor environment like a human dwelling. In the present work a set of indoor radon and thoron measurements was carried out using time-integrated passive twin cup dosimeters containing LR-115 Type II solid state nuclear track detectors in different houses of Khurja City in Bulandshahar district of U.P. in India, built of the same type of building materials. The radon gas concentration was found to vary from 9.18 to 23.19 Bq m?3 with an average value of 16.02 Bq m?3 (SD = 3.68) and the thoron gas concentration varied from 2.78 to 9.03 Bq m?3 with an average value of 5.36 Bq m?3 (SD = 1.58). The radon progeny concentration ranged from 0.99 to 2.51 mWL with an average value of 1.77 mWL (SD = 0.40) and the concentration of thoron progeny was found to vary from 0.30 to 0.98 mWL with an average value of 0.58 mWL (SD = 0.17). The annual effective dose varied from 0.27 to 0.67 mSv year?1 with an average value of 0.47 mSv year?1(SD = 0.10).  相似文献   

7.
The temporal variation of the radon concentration, and the radon and thoron concentrations every 3 months for a year were measured using two types of devices in a landmark skyscraper, the Tokyo Metropolitan Government Daiichi Building. In the measurement of temporal variation of the radon concentration using a pulse type ionization chamber, the average radon concentration was 21 ± 13 Bq m?3 (2–68 Bq m?3). The measured indoor radon concentration had a strong relationship with the operation of the mechanical ventilation system and the activities of the office workers. The radon concentration also increased together with temperature. Other environmental parameters, such as air pressure and relative humidity, were not related to the radon concentration. In the long-term measurements using a passive radon and thoron discriminative monitor, no seasonal variation was observed. The annual average concentrations of radon and thoron were 16 ± 8 and 16 ± 7 Bq m?3, respectively. There was also no relationship between the two concentrations. The annual average effective dose for office workers in this skyscraper was estimated to be 0.08 mSv y?1 for 2000 working hours per year. When considering the indoor radon exposure received from their residential dwellings using the annual mean radon concentration indoors in Japan (15.5 Bq m?3), the annual average effective dose was estimated to be 0.37 mSv y?1. This value was 31 % of the worldwide average annual effective dose.  相似文献   

8.
The activity concentration and absorbed gamma dose rates due to primordial radionuclides (238U, 232Th and 40K) have been determined for the soil of Coimbatore city using NaI(Tl) gamma-ray spectrometer. The average activity concentrations of 232Th, 238U and 40K in the soil samples have been found to be 31.4 Bq·kg−1, 12.8 Bq·kg−1 and 698.0 Bq·kg−1, respectively, which give the total gamma dose rate contribution of 56.4 nGy·h−1. Grab sampling technique has been used to determine the indoor radon (222Rn) and thoron (220Rn) progeny levels in different dwellings in the city. The concentrations of radon and thoron progenies range from 0.4 to 10.4 and from 0.7 to 12.7 mWL with a mean value of 1.4 mWL and 3.1 mWL, respectively. The annual effective dose due to radon and thoron progeny has been found to be 0.14 mSv·y−1.  相似文献   

9.
Radiation exposure and effective dose received through two routes of exposure, viz. external and internal, via inhalation, by residents of 10 villages belonging to Natural High Background Radiation Areas (NHBRA) of coastal regions of Kanyakumari District and Tamil Nadu in India were studied. While the indoor gamma radiation levels were monitored using Thermo Luminescent Dosimeters (TLDs), the indoor radon and thoron gas concentrations were measured using twin chamber dosimeters employing Solid State Nuclear Track Detectors (SSNTDs, LR-115-II). The average total annual effective dose was estimated and found to be varying from 2.59 to 8.76 mSv.  相似文献   

10.
Alpha- and beta-activities per unit volume of air due to radon (222Rn), thoron (220Rn) and their progenies were measured in the air of natural caves and ancient mines as well as inside different reference atmospheres by using CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs). In addition, the radon concentration was continuously measured inside one of the studied caves by using the SSNTDs’ method and AlphaGuard counter. Equilibrium factors between radon and its daughters and between thoron and its progeny were evaluated in the studied atmospheres. Alpha-activities due to 218Po and 214Po short-lived radon decay products were determined in different compartments of the respiratory tract of members of the public. The committed equivalent doses due to the 218Po and 214Po radon short-lived progeny were evaluated in different tissues of the respiratory tract of the visitors of the considered caves and ancient mines. Annual effective doses due to radon progeny from the inhalation of air by the visitors of the studied caves and ancient mines were evaluated.  相似文献   

11.
Mineral sands are mined in several countries to supply to the titanium and zircon producing industries. Coastal black mineral sands usually contain, besides ilmenite (FeTiO3) and rutile (TiO2), radioactive minerals such as zircon (ZrSiO4) and monazite (RePO4). Radon and thoron activity concentration originated from natural radioactive contents of the black mineral sand was monitored at the extraction and processing for black minerals in the coastal areas of Ha Tinh Province, one of the around 40 coastal mineral sand deposits in Vietnam. The survey was carried out with the Raduet chambers made by Radosys Ltd—Hungary. The obtained results for 25 investigated points show that the measured values are not high in the residential houses and in case of the sand extraction site as well. At the titanium processing plant the measured values were higher than outside the facility (Radon: 18–55 Bq/m3 with average of 34 Bq/3 and Thoron 33–118 Bq/m3 with average of 58 Bq/m3) but still comparable to the average concentration of the world published by UNSCEAR. The typical outdoor levels of radon and thoron gas are each of the order of 10 Bq/m3. Although the radon concentrations were low in the zircon and titanium processing plants, the thoron concentrations in the houses for separating rutile and zircon were very high. At zircon processing factory, the thoron concentration could reach 2,931 Bq/m3 and the estimated annual effective dose would be 21.4 mSv/a. Intervention has to be taken in order to reduce the thoron level in this factory since the level of thoron and its progenies corresponding to an annual occupational effective dose is beyond the action level of 6 mSv/a.  相似文献   

12.
Radon and thoron have been identified as potential radiological health hazard and the dose estimation due to their exposure is an important task. Understanding their behavior in indoor environment helps in calculating the inhalation doses due to them. Present study aims at the distribution of radon and thoron concentrations in a typical Indian dwelling. Solid state nuclear track detectors are employed in the study. The concentration of radon is found to be invariant in indoor environment. The thoron concentration is found to decrease exponentially as a function of distance from the source (wall/floor). Solution of one dimensional diffusion equation is used for regression fittings for thoron variation, from which the diffusion constants and the exhalation rates were calculated. The diffusion constants varied from 0.00195 to 0.00540 m2 s−1.  相似文献   

13.
Summary Aone year survey of indoor radon and thoron concentrations was carried out in offices and dwellings of the Gunma prefecture, Japan. A passive integrating radon and thoron discriminative monitor was used in the survey. The annual mean radon concentration was 22±14 Bq . m-3, and ranged from 12 to 93 Bq . m-3 among the 56 surveyed rooms. Radon concentration in offices was generally higher than that in the dwellings, with the arithmetic averages of 29 and 17 Bq . m-3, respectively. Radon concentrations were generally lower in the traditional Japanese wooden houses than those houses built with other building materials. Seasonal variation of indoor radon was also observed in this survey. Compared to summer and autumn, radon concentrations were generally higher in spring and winter. The mean value of thoron to radon ratio was estimated to be 1.3, higher values were observed in the dwellings than in the offices. The annual effective dose from the exposure to indoor radon was estimated to be 0.47 mSv after taking the occupancy factors of offices and dwellings into account.  相似文献   

14.
Measurements of radon,thoron and their progeny in Gifu prefecture,Japan   总被引:1,自引:0,他引:1  
Summary Due to the rocky neighborhood, consisting of mostly granite with high radium content, an elevated radon concentration was found in a territory of Gifu prefecture situated in the middle of Japan. Radon concentrations in water were measured and were found to be considerably high. Since indoor radon and radon progeny concentrations might be relatively high, their concentrations were also analyzed. Besides the radon and radon progeny, thoron and thoron progeny concentrations were also investigated. Dose estimations for radon and thoron in indoor air are discussed.  相似文献   

15.

In this investigation, the passive estimation of radon (Rn222), thoron (Rn220) and their progenies have been measured in the dwellings of Reasi district of Jammu & Kashmir for a period of 1 year. These estimations have been done with the help of latest developed single entry Pin-hole based dosimeters and progeny sensors based on deposition. The annual Equilibrium factors for 222Rn, 220Rn, and their progenies have been calculated separately for each dwellings The average annual effective dose was found to be 0.9 ± 0.2 mSv/y for 222Rn, which is less than prescribed limit of ICRP. The results obtained indicate no vital health hazards because of exposure of Rn222, Rn220 and their progenies.

  相似文献   

16.
A new Monte Carlo computer code was developed for determining the detection efficiencies of the CR-39 and LR-115 II solid state nuclear track detectors (SSNTD) for a-particles emitted by radon (222Rn) and thoron (220Rn) series inside the atmosphere of dwelling rooms. Alpha-activities due to radon, thoron and their decay products, were evaluated for the determination of the detection efficiencies of the SSNTD utilized for the emitted a-particles by measuring the corresponding track densities. The influence of the ventilation rate and building material on the concentration of radon, thoron and their progenies was investigated. Equilibrium factors between radon and its progeny and between thoron and its daughters have been evaluated in the air of the rooms.  相似文献   

17.
In the present study, the deposition velocities of 222Rn/220Rn decay products were measured experimentally using SSNTD based passive detectors, direct radon progeny sensor (DRPS) and direct thoron progeny sensor (DTPS) and the results were compared with obtained values by Monte-Carlo simulations. In both cases, deposition velocities were found to be log-normally distributed and also the experimentally measured geometric mean (GM) and geometric standard deviation (GSD) of (0.12, 1.85) m h?1 for radon decay products and (0.07, 1.75) m h?1 for thoron decay products were found to be in good agreement with the simulated values.  相似文献   

18.
The radon concentration has been measured in thermal waters used for medical therapy and drinking purposes in Yalova basin, Turkey. Radon activity measurements in water samples were performed using RAD 7 radon detector equipped with RAD H2O (radon in water) accessory and following a protocol proposed by the manufacturer. The results show that the concentration of 222Rn in thermal waters ranges from 0.21 to 5.82 Bql?1 with an average value of 2.4 Bql?1. In addition to radon concentration, physicochemical parameters of water such as temperature (T), electrical conductivity, pH and redox potential (Eh) were also measured. The annual effective doses from radon in water due to its ingestion and inhalation were also estimated. The annual effective doses range from 0.2 to 0.75 μSvy?1 for ingestion of radon in water and from 2.44 to 9 μSvy?1 for inhalation of radon released from the water.  相似文献   

19.
Enclosed spaces in contact with soil, the main source of radon, like greenhouses have potentially high radon (222Rn) concentrations. Greenhouses are frequented by visitors and also are workplaces. The study of radon concentrations in greenhouses is, thus, a relevant concern for public health and environmental radiation authorities. For this study, the radon concentrations in 12 greenhouses in different locations within Mexico City were measured using nuclear track methodology. The detectors used for the study consisted of the well-known closed-end cup device, with CR-39 Lantrack® as detector material. The measurements were carried out over a period of one year, divided into four three-month sub-periods. The lowest and highest annual mean radon concentrations found in individual greenhouses were 17.0 and 45.1 Bq/m3, respectively. The annual mean averaged over all 12 greenhouses was 27.3 Bq/m3. No significant seasonal variation was observed. Using the highest annual mean radon concentration found in an individual greenhouse, and an equilibrium factor of 0.4, the effective dose from 222Rn and its progenies was calculated to be 339.9 nSv/h. This corresponds to an annual dose rate of 679.8 μSv/y (0.057 WLM/y) for a worker spending 4 h a day, 5 days a week, 50 weeks a year, inside the greenhouse. For a visitor spending 12 h a year inside the greenhouse the annual dose is 2.469 μSv/y. The study of indoor radon concentrations in closed buildings such as greenhouses, which are both workplaces and open to visitors, is an important public health consideration.  相似文献   

20.
In the environs of uranium mining, milling and processing facilities and in the uranium mineralized terrain, a little higher ambient radon concentration and gamma radiation level may be expected in comparison with natural background. The present study gives a brief account of atmospheric radon concentration, gamma absorbed dose rate and radiation dose received by the members of public in the vicinity of Narwapahar uranium mine. The ambient radon concentration in the air in the study area was found to vary from 5 to 107 Bq m−3 with geometric mean of 24 Bq m−3 and geometric standard deviation of 1.74 Bq m−3. The measured gamma absorbed dose rate in air at 1 m above the ground ranged from 87 to 220 nGy h−1 with an overall arithmetic mean of 128 ± 18.5 nGy h−1. The mean annual effective dose received by the members of public from inhalation of radon and its progeny and external gamma exposure was estimated to be 0.32 mSv year−1, which is comparable to other reported values elsewhere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号