首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new saponins were isolated from husks of Xanthoceras sorbifolia Bunge and their structures were elucidated as 3‐O‐[β‐D‐galactopyranosyl(1→2)]‐α‐L‐arabinofuranosyl(1→3)‐β‐D‐methyl glucuronic acid‐21‐O‐(3,4‐diangeloyl)‐α‐L‐rhamnose‐3β, 16α, 21β, 22α, 28β‐pentahydroxyl‐22‐acetoxy‐olean‐12‐ene(1) and 3‐O‐[β‐D‐galactopyranosyl(1→2)]‐α‐L‐arabinofuranosyl(1→3)‐β‐D‐methyl glucuronic acid‐21,22‐O‐diangeloyl‐3β,15α,16α,21β,22α,28β‐hexahydroxyl‐olean‐12‐ene(2) on the basis of 1D and 2D NMR (including 1H, 13C‐NMR, 1H? 1H COSY, HSQC, HMBC and DEPT), ESI‐MS spectrometry and chemical methods. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Two new alkaloids, Septonine (C35H44N2O9) and Septontrionine (C25H39NO6) were isolated from the roots of Aconitum septentrionale K. According to the 1H and 13C NMR, IR, and mass spectra, Septonin and Septontrionin were assigned the structures of 20-ethyl-7-hydroxy-1α,14α,16β-trimethoxy-6-oxo-17(7→8)abeoaconitan-4-ylmethyl 2-(2,5-dioxopyrrolidin-l-yl)benzoate and 20-ethyl-7-hydroxy-1α,14α,16β-trimethoxy-4-methoxymethyl-17(7→8)abeoaconitan-6-one, respectively.  相似文献   

3.
ABSTRACT

Synthesis of three tetrasaccharides, namely, 0-α-L-fucopyranosyl-(1→3)-0-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-(1→3)-0-(β-D-galactopyranosyl)-(1→4)-β-D-glucopyranose (7), 0-α-L-fucopyranosyl-(1→4)-0-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-(1→3)-0-(β-D-galactopyranosyl)-(1→4)-D-glucopyranose (9), and 0-α-L-fucopyransoyl-(1→3)-0-(2-acetamido-2-deoxy-β-D-glucopyransoyl)-(1→6)-0-(β-D-galactopyranosyl)-(1→4)-D-glucopyranose (15) has been described. Their structures have been established by 13C NMR spectroscopy.  相似文献   

4.
A glycoside, holothurin A1 has been isolated from the polar glyosidic fractions of the holothuriansH. floridana andH. grisea. The complete structure of the glycoside has been established; it is: 3β-[0-(3-0-methyl-β-D-glucopyranosyl)-(1 → 3)-0-β-D-glucopyranosyl-(1 → 4)-0-β-D-quinovopyranosyl-(1 → 2)-(4-sulfato-β-D-xylopyranosyl)oxy]holosta-9(11)-ene-12α,17α,22ξ-triol. Details of the IR and1H and13C NMR spectra of the compounds obtained are given.  相似文献   

5.
The chemical study of Sechium mexicanum roots led to the isolation of the two new saponins {3‐O‐β‐D ‐glucopyranosyl (1 → 3)‐β‐D ‐glucopyranosyl‐2β,3β,16α,23‐tetrahydroxyolean‐12‐en‐28‐oic acid 28‐O‐α‐L ‐rhamnopyranosyl‐(1 → 3)‐β‐D ‐xylopyranosyl‐(1 → 4)‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐α‐L ‐arabinopyranoside} (1) and {3‐O‐β‐D ‐glucopyranosyl (1 → 3)‐β‐D ‐glucopyranosyl‐2β,3β,16α,23‐tetrahydroxyolean‐12‐en‐28‐oic acid 28‐O‐α‐L ‐rhamnopyranosyl‐(1 → 3)‐β‐D ‐xylopyranosyl‐(1 → 4)‐[β‐D ‐apiosyl‐(1 → 3)]‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐α‐L ‐arabinopyranoside} (2), together with the known compounds {3‐O‐β‐D ‐glucopyranosyl‐(1 → 3)‐β‐D ‐glucopyranosyl‐2β,3β,6β,16α,23‐pentahydroxyolean‐12‐en‐28‐oic acid 28‐O‐α‐L ‐rhamnopyranosyl‐(1 → 3)‐β‐D ‐xylopyranosyl‐(1 → 4)‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐α‐L ‐arabinopyranoside} (3), tacacosides A1 (4) and B3 (5). The structures of saponins 1 and 2 were elucidated using a combination of 1H and 13C 1D‐NMR, COSY, TOCSY, gHMBC and gHSQC 2D‐NMR, and FABMS of the natural compounds and their peracetylated derivates, as well as by chemical degradation. Compounds 1–3 are the first examples of saponins containing polygalacic and 16‐hydroxyprotobasic acids found in the genus Sechium, while 4 and 5, which had been characterized partially by NMR, are now characterized in detail. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Two new compounds, (6S,13S)‐6‐{[β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}cleroda‐3,14‐dien‐13‐ol ( 1 ) and kadsuric acid 3‐methyl ester ( 2 ), together with nine known compounds, (6S,13E)‐6‐{[β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}cleroda‐3,13‐dien‐15‐ol ( 3 ), (6S,13S)‐6‐[6‐O‐acetyl‐β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}‐13‐{[α‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐fucopyranosyl]oxy}cleroda‐3,14‐diene ( 4 ), (6S,13S)‐6‐{[6‐Oβ‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}‐13‐{[α‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐fucopyranosyl]oxy}cleroda‐3,14‐diene ( 5 ), 15‐hydroxydehydroabietic acid ( 6 ), 15‐hydroxylabd‐8(17)‐en‐19‐oic acid ( 7 ), junicedric acid ( 8 ), (4β)‐kaur‐16‐en‐18‐oic acid ( 9 ), (4β)‐16‐hydroxykauran‐18‐oic acid ( 10 ), and (4β,16β)‐16‐hydroxykauran‐18‐oic acid ( 11 ) were isolated from the fronds of Dicranopteris linearis or D. ampla. Their structures were established by extensive 1D‐ and 2D‐NMR spectroscopy. Compounds 1 and 3 – 8 showed no anti‐HIV activities.  相似文献   

7.
Two new oleanane-type triterpenoid glycosides, 3-O-β-D-xylopyranosyl-(1→2)-α-L-arabinopyranosyl-(1→3)-[β-D-glucuronopyranosyl-(1→2)]-β-D-glucuronopyranosyl-22α-angeloyloxyolean-12-ene-15α,16α,28-triol(1) and 3-O-β-D-xylopyranosyl-(1→2)-α-L-arabinopyranosyl-(1→3)-[β-D-glucuronopyranosyl-(1→2)]-β-D-glucuronopyranosyl-21β-acetyl-22α-angeloyloxyolean-12-ene-16α,28-diol (2) were isolated from the stems of Camellia oleifera Abel. Their structures were elucidated by means of spectroscopic methods and chemical evidence. The cytotoxic activities of compounds 1–2 were evaluated against five human tumour cell lines (HCT-8, BGC-823, A5049, and A2780). Compounds 1–2 showed cytotoxic activity against five human cancer cell lines, with IC50 values ranging from 3.15 to 7.32 μM.  相似文献   

8.
The structure of a new glycoside fromHolothuria edulis, holothurin A2, has been established with the aid of periodate oxidation, methylation, Smith degradation, and13C NMR spectroscopy. The structure of the glycoside has been determined as holost-9(11)-ene-3β,12α,17α-triol 3-0-{2-0-[3-0-methyl-β-D-glucopyranosyl-(1→3)-0-β-D-glucopyranosyl-(1→4)-0-β-D-quinovopyranosyl]-4-0-sulfate-β-D-xylopyranoside}.  相似文献   

9.
Two dammarane‐type saponins with a novel aglycone derived from the parent 16,22‐epoxy‐24‐methylidenedammarane and lotoside A, a new lotogenin derivative, were isolated from the MeOH extract of the stem bark of the Brazilian medicinal plant Zizyphus joazeiro, in addition to the known saponin 3β‐{{O‐[O‐[α‐L ‐arabinofuranosyl‐(1→2)]‐O‐[β‐D ‐glucopyranosyl‐(1→3)]]‐α‐L ‐arabinopyranosyl}oxy}jujubogenin ( 1 ). The structures of the new compounds were determined as 16,22‐epoxy‐3β‐[(β‐D ‐glucopyranosyl)oxy]‐24‐methylidenedammarane‐15α,16α,20β‐triol ( 2 ), 16,22‐epoxy‐3β‐{{O‐[O‐[β‐D ‐glucopyranosyl‐(1→2)]‐O‐[β‐D ‐apiofuranosyl‐(1→3)]]‐β‐D ‐glucopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl}oxy}‐24‐methylidenedammarane‐15α,16α,20β‐triol ( 3 ), and 3β‐{{O‐[O‐[β‐D ‐glucopyranosyl‐(1→2)]‐O‐[β‐D ‐apiofuranosyl‐(1→3)]]‐β‐D ‐glucopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl}oxy}lotogenin ( 4 ) by means of 1D‐ and 2D‐NMR spectroscopy, as well as FAB mass spectrometry. For the novel aglycone, we propose the name joazeirogenin and, for the new saponins, joazeiroside A ( 2 ) and B ( 3 ). Joazeirogenin was found to be 16,22‐epoxy‐24‐methylidenedammarane‐3β,15α,16α,20β‐tetrol.  相似文献   

10.
The base-catalysed rearrangement of 3β, 16α-dihydroxy-5α-androstan-17-one diacetate ( 1 ) in (D6)benzene/ CD3OD to 3β, 17β-dihydroxy-5α-androstan-16-one ( 3 ) is followed by 13C-NMR spectroscopy. By the same procedure, it is determined that in (D6)benzene/CD3OD, but under acid catalysis, 1 does not rearrange to 3 but yields the intermediate product 3β, 16α-dihydroxy-5α -androstan-17-one 17α -methyl hemiacetal ( 5 ).  相似文献   

11.
Two new steroidal glycosides 1 and 2, along with three known ones (35), were isolated from the 95% ethanol extract of the roots of Cynanchum limprichtii Schltr. The structure of the new compounds was elucidated as 3-O-α-L-diginopyranosyl-(1→4)-β-D-digitoxopyranosyl-(1→4)-β-D-cymaropyranosyl-(1→4)-β-D-thevetopyranosyl-14, 16:15, 20:18, 20-triepoxy-14, 15-secopregn-4, 6, 8 (14)-triene (1) and 3-O-α-L-cymaropyranosyl-(1→4)-β-D-digitoxopyranosyl- (1→4)-β-D-3-demethyl-2-deoxythevetopyranosyl-14, 16: 15, 20: 8, 20-triepoxy-14, 15-secopregn-5, 8 (14)-diene (2) on the basis of spectroscopic analysis together with acidic hydrolysis. All compounds showed cytotoxic activity against the human cancer cell line HL60, with IC50 values of 55.36, 65.41, 17.88, 17.68 and 33.5 μM, respectively. While, only compound 3 showed cytotoxicity against the Caco-2 cell line, with an IC50 value of 67.47 μM.  相似文献   

12.
Abstract

α,β-(1→4)-Glucans were devised as models for heparan sulfate with the simplifying assumptions that carboxyl-reduction and sulfation of heparan sulfate does not decrease the SMC antiproliferative activity and that N-sulfates in glucosamines can be replaced by O-sulfates. The target oligo-saccharides were synthesized using maltosyl building blocks. Glycosylation of methyl 2,3,6,2′,3′,6′-hexa-O-benzyl-β-maltoside (1) with hepta-O-acetyl-α-maltosyl bromide (2) furnished tetrasaccharide 3 which was deprotected to α-D-Glc-(1→4)-β-D-Glc-(1→4)-α-D-Glc-(1→4)-β-D-Glc-(1→OCH3) (5) or, alternatively, converted to the tetrasaccharide glycosyl acceptor (8) with one free hydroxyl function (4?′-OH). Further glycosylation with glucosyl or maltosyl bromide followed by deblocking gave the pentasaccharide [β-D-Glc-(1→4)-α-D-Glc-(1→4)]2-β-D-Glc-(1→OCH3) (11) and hexasaccharide [α-D-Glc-(1→4)-β-D-Glc-(1→4)2-α-D-Glc-(1→4)-β-D-Glc-(1→OCH3) (14). The protected tetrasaccharide 3 and hexasaccharide 12 were fully characterized by 1H and 13C NMR spectroscopy. Assignments were possible using 1D TOCSY, T-ROESY, 1H,1H 2D COSY supplemented by 1H-detected one-bond and multiple-bond 1H,13C 2D COSY experiments.  相似文献   

13.
The 13C NMR spectra of some hydroxylated ent-kaurane diterpenoids were measured in CDCl3-Py-d5 (1:1) solution and also after addition of boric acid. Complexation of ent-3β,18-, ent-7α,15β-, ent-7α,15α-, ent-15β,16β- and ent-16β,17-dihydroxy derivatives with boric acid produced considerable chemical shift changes and marked broadening of the signals of the hydroxy-bearing and neighbouring carbon atoms. This behaviour provides a useful and reliable method for assigning the 13C NMR spectra of these compounds.  相似文献   

14.
A new compound 1 was isolated from the methanolic extract of the stems of the Caesalpinia pulcherrima Linn. along with a reported compound (2) 3-O-β-D-glucopyranosyl-(1→4)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyl hederagenin 28-O-β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl ester. The new compound 1 has m.p. 272–274°C, m.f. C46H74O17, [M]+ m/z 898. It was characterised as 3-O-β-D-glucopyranosyl-(1→4)-α-L-arabinopyranosyl hederagenin 28-O-β-D- xylopyranosyl ester by various colour reactions, chemical degradations and spectral analyses. Antibacterial activity of compound 1 was screened against various Gram-positive and Gram-negative bacteria and showed significant results.  相似文献   

15.
ABSTRACT

The partially deprotected trisaccharide 17 has been synthesized as an analogue of the repeating unit of the backbone of rhamnogalacturonan I. The trisaccharide 17 was obtained after prior selective derivatization of HO-3 and HO-4 of a rhamnopyranose cyanoethylidene glycosyl donor, followed by coupling with a tritylated galactopyranosyluronic acceptor (11), selective removal of the acetyl group at the O-2' position of the formed disaccharide 12, and glycosylation of the HO-2' position with methyl (ethyl 2,3-di-O-benzyl-4-O-p-methoxybenzyl-1-thio-β-D-galactopyranosid)uronate (14) providing methyl (methyl 2,3-di-O-benzyl-4-O-p-methoxybenzyl-α-D-galactopyranosyluronate)-(1→2)-(4-O-benzoyl-3-O-benzyl-α-L-rhamnopyranosyl)-(1→4)-(allyl 2,3-di-O-benzyl-β-D-galactopyranosid)uronate (15). Finally, palladium chloride catalyzed deallylation (16) and hydrogenolysis over Pd-C resulted in methyl (methyl α-D-galactopyranosyluronate)-(1→2)-(4-O-benzoyl-α-L-rhamnopyranosyl)-(1→4)-α/β D-galactopyranuronate (17).  相似文献   

16.
Three new triterpenoid saponins, ardisicrenoside I ( 1 ), ardisicrenoside J ( 2 ), and ardisicrenoside M ( 3 ), along with eight known compounds, were isolated from the roots of Ardisia crenata Sims . Their structures were elucidated as 16α‐hydroxy‐30,30‐dimethoxy‐3βO‐{β‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}‐13β,28‐epoxyoleanane ( 1 ), 16α‐hydroxy‐30,30‐dimethoxy‐3βO‐{α‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}‐13β,28‐epoxyoleanane ( 2 ), 30,30‐dimethoxy‐16‐oxo‐3βO‐{β‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}‐13β,28‐epoxyoleanane ( 3 ), ardisiacrispin A ( 4 ), ardisiacrispin B ( 5 ), ardisicrenoside B ( 6 ), ardisicrenoside A ( 7 ), ardisicrenoside H ( 8 ), ardisicrenoside G ( 9 ), cyclamiretin A‐3βOβ‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐arabinopyranoside ( 10 ), and cyclamiretin A‐3βOα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐arabinopyranoside ( 11 ) by means of chemical and spectral analysis, and their cytotoxicities were evaluated in vitro.  相似文献   

17.
The new rearranged‐abietane diterpene 1 , the four new triterpenoids 2 – 5 , and the new aminoethylphenyl oligoglycoside 6 , besides 19 known compounds, were isolated from the roots of Schnabelia tetradonta, a Chinese endemic herb. The structures of the new compounds were elucidated on the basis of spectroscopic evidence as 12,17‐epoxy‐11,14,16‐trihydroxy‐17(15→16)‐abeo‐abieta‐8,11,13,15‐tetraen‐7‐one ( 1 ), 21β‐(β‐D ‐glucopyranosyloxy)‐2α,3α‐dihydroxyolean‐12‐en‐28‐oic acid ( 2 ), 2β,3β,16β‐trihydroxy‐15‐oxo‐28‐norolean‐12‐en‐23‐oic acid ( 3 ), 3β‐[(4‐O‐acetyl‐β‐D ‐glucopyranuronosyl)oxy]‐2β,16β‐dihydroxy‐28‐norolean‐15‐oxo‐12‐en‐23‐oic acid ( 4 ), 3β‐[(4‐O‐acetyl‐6‐O‐methyl‐β‐D ‐glucopyranuronosyl)oxy]‐2β,16β‐dihydroxy‐15‐oxo‐28‐norolean‐12‐en‐23‐oic acid ( 5 ), and 4‐[2‐(acetylamino)ethyl]phenyl O‐6‐O‐[(Z)‐p‐methoxycinnamoyl]‐β‐D ‐glucopyranosyl‐(1→2)]‐O‐[β‐D ‐glucopyranosyl‐(1→3)]‐4‐O‐acetyl‐α‐L ‐rhamnopyranoside ( 6 ), respectively.  相似文献   

18.
Structures for the genins of the ester glycosides of Marsdenia erecta are suggested. They are based on the behaviour in alkaline hydrolysis of these ester glycosides, their NMR. and mass spectra and ORD. data. All genins are derived from three acyl-free pregnane derivatives, i.e. drevogenin-P ( 1 ), 17 β-marsdenin ( 3 ) and marsectohexol ( 7 ). The structure of 1 is known, 3 and 7 are new compounds, i.e. 3 = 3β,8β,11α,12β,14β-pentahydroxy-Δ5-pregnen-20-one and 7 = 3β,8β,11α,12β,14β,20ξ-hexahydroxy-Δ5-pregnene. Formulae 13–17 were attributed to the acyl-genins A-1, A-2, A-3, A-4 and A-5, but only two of them were pure compounds, i.e. acyl-genin A-3 = 11,12-di-O-tiglyl-17β-marsdenin ( 15 ) and acyl-genin A-5 = 11,12-di-O-acetyl-marsectohexoi ( 17 ). Acyl-genin A-1 is a mixture of the two esters 13a + 13b derived from drevogenin-P, and similarly acyl-genin A-2 is a mixture of the esters 14a + 14b derived from 17β-marsdenin. The poorly characterised acyl-genin A-4 is most probably a mixture of the esters 16a + 16b , also derived from 17β-marsdenin.  相似文献   

19.
The course of the singlet‐oxygen reaction with pregn‐17(20)‐enes and pregn‐5,17(20)‐dienes was studied to compare the reactivity of the two alkene moieties present in some steroid families. Thus, from commercially available (3β,5α)‐hydroxy‐androstan‐17‐one and (3β)‐3‐hydroxyandrost‐5‐en‐17‐one, the following 3‐{[(tert‐butyl)dimethylsilyl]oxy}‐substituted, 17(20)‐unsaturated pregnanes were prepared (see Fig. 1): (3β,5α)‐21‐norpregn‐17(20)‐ene 1 ; (3β,5α,17Z)‐pregn‐17(20)‐ene 2 , (3β,5α,16α,17E)‐pregn‐17(20)‐en‐16‐ol 3 , (16β,5α,17E)‐pregn‐17(20)‐en‐16‐ol 4 , (3β,5α,16β,17E)‐pregn‐17(20)‐en‐16‐ol acetate 5 , (3β,16α)‐21‐norpregna‐5,17(20)‐dien‐16‐ol 6 , (3β,16α,17E)‐pregna‐5,17(20)‐dien‐16‐ol 7 , (3β,17Z)‐pregna‐5,17(20)‐diene 8 , (3β,17E)‐pregna‐5,17(20)‐dien‐21‐ol 9 and (3β,17E)‐5,17(20)‐dien‐21‐ol acetate 10 . The oxygenated products (see Fig. 2) obtained from 1 – 10 and 1O2, generated by irradiation of Rose Bengal in 3O2‐saturated pyridine solution, were characterized by 1H‐, 13C‐NMR, and MS (EI, FAB, HR‐EI, ESI‐ and UV‐MALDI‐TOF) data. Major products were those formed by the ene reaction involving as intermediates the corresponding hydroperoxides and the cyclic tautomers of the allylic hydroperoxides, i.e., the corresponding oxiranium oxide‐like intermediate (Scheme 5).  相似文献   

20.
《Tetrahedron: Asymmetry》2005,16(3):733-738
α-d-Galactopyranosyl-(1→6)-[β-d-galactofuranosyl-(1→5)]-β-d-galactofuranosyl-(1→6)-β-d-galactofuranosyl-(1→5)-[α-d-galactopyranosyl-(1→6)]-β-d-galactofuranose, the dimer of the trisaccharide repeating unit of the cell-wall galactans of Bifidobacterium catenulatum YIT 4016, has been synthesized as its dodecyl glycoside 2 by coupling of 2,3,4,6-tetra-O-benzyl-α-d-galactopyranosyl-(1→6)-[6-O-acetyl-2,3,5-tri-O-benzoyl-β-d-galactofuranosyl-(1→5)]-2-O-acetyl-3-O-benzyl-β-d-galactofuranosyl trichloroacetimidate 14 with dodecyl 2,3,4,6-tetra-O-benzyl-α-d-galactopyranosyl-(1→6)-[2,3,5-tri-O-benzoyl-β-d-galactofuranosyl-(1→5)]-2-O-acetyl-3-O-benzyl-β-d-galactofuranoside 16. The trisaccharide trichloroacetimidate donor 14 and trisaccharide acceptor 16 were regiospecifically prepared by employing 3-O-benzyl-1,2-O-isopropylidene-α-d-galactofuranose 4 as the glycosyl acceptor, and isopropyl 2,3,4,6-tetra-O-benzyl-1-thio-β-d-galactopyranoside 5 and 6-O-acetyl-2,3,5-tri-O-benzoyl-β-d-galactofuranosyl trichloroacetimidate 9 as glycosyl donors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号