首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Mehretie S  Admassie S  Hunde T  Tessema M  Solomon T 《Talanta》2011,85(3):1376-1382
A sensitive and selective method was developed for the determination of N-acetyl-p-aminophenol (APAP) and p-aminophenol (PAP) using poly(3,4-ethylenedioxythiophene) (PEDOT)-modified glassy carbon electrode (GCE). Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical reaction of APAP and PAP at the modified electrode. Both APAP and PAP showed quasireversible redox reactions with formal potentials of 367 mV and 101 mV (vs. Ag/AgCl), respectively, in phosphate buffer solution of pH 7.0. The significant peak potential difference (266 mV) between APAP and PAP enabled the simultaneous determination both species based on differential pulse voltammetry. The voltammetric responses gave linear ranges of 1.0 × 10−6-1.0 × 10−4 mol L−1 and 4.0 × 10−6-3.2 × 10−4 mol L−1, with detection limits of 4.0 × 10−7 mol L−1 and 1.2 × 10−6 mol L−1 for APAP and PAP, respectively. The method was successfully applied for the determination of APAP and PAP in pharmaceutical formulations and biological samples.  相似文献   

2.
The feasibility of a newly synthesized Rh(III) complex, Rh[(trpy)(bpy)Cl](PF6)2, as a novel ionophore for the preparation of anion-selective polymeric membrane electrodes was tested. The ionophore exhibited anti-Hofmeister behavior with enhanced potentiometric selectivity toward thiocyanate ion compared to other anions. The influence of some experimental parameters such as membrane composition, nature and amount of plasticizer and additive and concentration of internal solution on the potential response of the SCN sensor were investigated. The electrode exhibits a Nernstian response for SCN over a wide concentration range (1.0 × 10−5 to 1.0 × 10−1 M) with a slope −58.7 ± 0.5 mV per decade and a detection limit of 4.0 × 10−6 M (0.23 ppm). It could be used in a pH range of 3.0-8.0 and has a fast response time of about 15 s. The proposed sensor was used for the determination of thiocyanate ions in real samples such as urine and saliva of smokers and nonsmokers and, as an indicator electrode, in potentiometric titrations of SCN ion.  相似文献   

3.
Singh AK  Saxena P  Mehtab S  Gupta B 《Talanta》2006,69(2):521-526
A new PVC membrane electrode based on 5,7,12,14-dibenzo-2,3,9,10-tetraoxa-1,4,8,11-tetraazacyclotetradecane (I) as an ion carrier, o-nitrophenyloctyl ether (o-NPOE) as solvent mediator and sodium tetraphenylborate (NaTPB) as lipophilic additive was fabricated and investigated as Sr2+-selective electrode. The best performance was exhibited by the membrane having composition 8:200:4:120 (I:o-NPOE:NaTPB:PVC). The electrode exhibited a Nernstian response for strontium ion over a wide concentration range 3.98 × 10−6 to 1.0 × 10−1 M with a slope of 29.0 ± 0.1 mV/decade of concentration and a detection limit of 2.82 × 10−6 M. It showed a response time of less than 10 s and could be used for at least 3 months without any divergence in potential. The proposed electrode showed a good discriminating ability towards strontium(II) ion over a wide variety of other metal ions including alkali, alkaline earth, transition, and heavy metal ions. The electrode can be used in the pH range of 2.5-10.5 and in mixtures containing up to 35% (v/v) non-aqueous content. It was used as an indicator electrode in potentiometric titration of strontium ion against EDTA.  相似文献   

4.
The characteristics, performance, and application of an electrode, namely, Pt|Hg|Hg2(PABzt)2| graphite, where PABzt stands for p-aminobenzoate ion, are described. This electrode responds to PABzt with sensivity of (58.1±1.0) mV per decade over the range 1.0×10−4 to 1.0×10−1 mol l−1 at pH 6.5-8.0 and a detection limit of 3.2×10−5 mol l−1. The electrode shows easy construction, fast response time (within 10-30 s), low-cost, and excellent response stability (lifetime greater than 6 months, in continuous use). The proposed sensor displayed good selectivity for p-aminobenzoate in the presence of several substances, especially, concerning carboxylate and inorganic anions. It was used to determine p-aminobenzoate in pharmaceutical formulations by means of the standard additions method. The results obtained by using this electrode compared very favorably with those given by an HPLC procedure.  相似文献   

5.
Zhang L  Li W  Shi M  Kong J 《Talanta》2006,70(2):432-436
A novel film modified electrode for the determination of trace lead was developed in this work. The modified electrode was prepared by the electropolymerization of N,N′-(o-phenylene)-bis-benzenesulfonamide (PBSA) as the ion capturing reagent to create the functional film. The modified electrode shows a high selectivity towards Pb2+ over interfering cations, e.g. Cu2+, Cd2+, Co2+, Ni2+, Zn2+, Cr2+, and the calibration curve was linear in the concentration range of 2.0 × 10−9 to 1.0 × 10−7 M with correlation coefficient of 0.999. For 20 min accumulation, detection limit of 1.0 × 10−9 M was obtained at the signal to noise ratio of 3. Analytical availability of the modified electrode was demonstrated by the application for samples from pond water.  相似文献   

6.
A novel method for determination of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) in an extract from mung bean sprouts using high performance liquid chromatography (HPLC) with chemiluminescence (CL) detection is described. The method is based on the CL reaction of auxin (indole-3-acetic acid and indole-3-butyric acid) with acidic potassium permanganate (KMnO4) and tris(2,2′-bipyridyl)ruthenium(II), which was immobilized on the cationic ion-exchange resin. The chromatographic separation was performed on a Nucleosil RP-C18 column (i.d.: 250 mm × 4.6 mm, particle size: 5 μm, pore size: 100) with an isocratic mobile phase consisting of methanol-water-acetic acid (45:55:1, v/v/v). At a flow rate of 1.0 mL min−1, the total run time was 20 min. Under the optimal conditions, the linear ranges were 5.0 × 10−8 to 5.0 × 10−6 g mL−1 and 5.0 × 10−7 to 1.0 × 10−5 g mL−1 for IAA and IBA, respectively. The detection limits were 2.0 × 10−8 g mL−1 and 2.0 × 10−7 g mL−1 for IAA and IBA, respectively. The relative standard deviation (RSD) of intra-day were 3.1% and 2.3% (n = 11) for 2 × 10−6 g mL−1 IAA and 2 × 10−6 g mL−1 IBA; The relative standard deviations of inter-day precision were 6.9% and 4.9% for 2 × 10−6 g mL−1 IAA and 2 × 10−6 g mL−1 IBA. The proposed method had been successfully applied to the determination of auxin in mung bean sprouts.  相似文献   

7.
A novel fluorescent chemical sensor for the highly sensitive and selective determination of Fe3+ ions in aqueous solutions is prepared. The iron sensing system was prepared by incorporating 5-(8-hydroxy-2-quinolinylmethyl)-2,8-dithia-5-aza-2,6-pyridinophane (L) as a neutral Fe3+-selective fluoroionophore in the plasticized PVC membrane containing sodium tetraphenylborate as a liphophilic anionic additive. The response of the sensor is based on the strong fluorescence quenching of L by Fe3+ ions. At pH 5.5, the proposed sensor displays a calibration curve over a wide concentration range from 6.0 × 10−4 to 1.0 × 10−7 M, with a relatively fast response time of less than 2 min. In addition to a high stability and reproducibility, the sensor shows a unique selectivity toward Fe3+ ion with respect to common coexisting cations. The proposed fluorescence optode was applied to the determination of iron(III) content of straw of rice, spinach and different water samples. The fluorescent sensor was also used as a novel probe for Fe3+/Fe2+ speciation in aqueous solution.  相似文献   

8.
A new PVC membrane strontium ion-selective electrode has been constructed using 6-(4-nitrophenyl)-2-phenyl-4,4-dipropyl-3,5-diaza-bicyclo[3,1,0] hex-2-ene (NPDBH) as a neutral ionophore. The electrode was prepared with 7% NPDBH (as ionophore), 57% acetophenone (as plasticizer), 30% PVC and 6% oleic acid (as lipophilic additive). The electrode responds to Sr2+ ion with a sensitivity of 28.2 ± 0.5 mV/decade over the range 1.0 × 10−6-1.0 × 10−1 mol L−1 and in a pH range of 3.0-10.0. The limit of detection was 2.4 × 10−7 mol L−1. It has a response time of <20 s and can be used for at least three months without any divergence in potentials. The proposed electrode shows good discrimination of Sr2+ ion from several cations. The effect of organic solvents on electrode response was examined. The results show that this electrode can be used in ethanol media up to 15% (v/v) concentration without interference. The isothermal temperature coefficient of this electrode amounted to 0.00019 V/°C. The electrode was found to work well under laboratory conditions. It was successfully applied to the determination of strontium ions in human urine and bone digests.  相似文献   

9.
The use of micellar electrokinetic capillary chromatography (MECC) with electrochemical detection is described for the determination of puerarin and daidzein in Puerariae radix and its medicinal preparations. Operated in a wall-jet configuration, a 300 μm diameter carbon-disk electrode was used as the working electrode, which exhibits good responses at +900 mV (versus SCE) for the two analytes. Under the optimum conditions, the analytes were base-line separated within 11 min in a sodium dodecyl sulphate—borax (pH 7.8) running buffer, and excellent linearity was obtained in the concentration range from 5.0×10−4 to 5.0×10−6 mol/l. The detection limit (S/N=3) was 6×10−7 and 1.1×10−6 mol/l for puerarin and daidzein, respectively. This work provides a useful method for the analysis of traditional Chinese medicines.  相似文献   

10.
Stevia rebaudiana leaves contain non-cariogenic and non-caloric sweeteners (steviol-glycosides) whose consumption could exert beneficial effects on human health. Steviol-glycosides are considered safe; nonetheless, studies on animals highlighted adverse effects attributed to the aglycone steviol. The aim of the present study was to develop and validate two different ultra-high-performance liquid chromatography methods with electrospray ionization mass spectrometry (UHPLC-MS) to evaluate steviol-glycosides or steviol in Stevia leaves and commercial sweetener (Truvia®). Steviol-glycosides identity was preliminarily established by UV spectra comparison, molecular ion and product ions evaluation, while routine analyses were carried out in single ion reaction (SIR) monitoring their negative chloride adducts. Samples were sequentially extracted by methanol, cleaned-up by SPE cartridge and the analytes separated by UHPLC HSS C18 column (150 mm × 2.1 mm I.D., 1.8 μm). The use of CH2Cl2 added to the mobile phase as source of Cl enhance sensitivity. The LLOD for stevioside, rebaudioside A, steviolbioside and steviol was 15, 50, 10 and 1 ng ml−1, respectively. Assay validation demonstrated good performances in terms of accuracy (89–103%), precision (<4.3%), repeatability (<5.7%) and linearity (40–180 mg/g). Stevioside (5.8 ± 1.3%), rebaudioside A (1.8 ± 1.2%) and rebaudioside C (1.3 ± 1.4%) were the most abundant steviol-glycosides found in samples of Stevia (n = 10) from southern Italy. Rebaudioside A was the main steviol-glycosides found in Truvia® (0.84 ± 0.03%). The amounts of steviol-glycosides obtained by the UHPLC-MS method matched those given by the traditional LC-NH2-UV method. Steviol was found in all the leaves extract (2.7–13.2 mg kg−1) but was not detected in Truvia® (<1 μg kg−1). The proposed UHPLC-MS methods can be applied for the routine quality control of Stevia leaves and their commercial preparations.  相似文献   

11.
Fakhari AR  Khorrami AR  Naeimi H 《Talanta》2005,66(4):813-817
A novel sensitive chromogenic reagent, N,N′-bis(3-methylsalicylidene)-ortho-phenylene diamine (MSOPD), has been synthesized and used in the spectrophotometric determination of nickel. At pH 8, MSOPD can react with nickel ion at room temperature to form a 1:1 complex. The apparent molar absorptivity is 9.5 × 104 l mol−1 cm−1 at 430 nm. Beer's low is obeyed over the range 0-1.0 × 10−5 M of nickel with a detection limit of 1.36 × 10−8 M. The relative standard deviation for measurement of 3.41 × 10−6 M nickel is 1.3% (n = 10). The method has successfully been applied to determination of trace amounts of nickel in some natural food samples.  相似文献   

12.
In this article a new coated platinum Cu2+ ion selective electrode based on 2-((2-(2-(2-(2-hydroxy-5-methoxybenzylideneamino)phenyl)disufanyl)phenylimino) methyl)-4-methoxyphenol Schiff base (L1) as a new ionophore is described. This sensor has a wide linear range of concentration (1.2 × 10−7-1.0 × 10−1 mol L−1) and a low detection limit of 9.8 × 10−8 mol L−1of Cu(NO3)2. It has a Nernstian response with slope of 29.54 ± 1.62 mV decade−1 and it is applicable in the pH range of 4.0-6.0 without any divergence in potentioal. The coated electrode has a short response time of approximately 9 s and is stable at least for 3.5 months. The electrode shows a good selectivity for Cu2+ ion toward a wide variety of metal ions. The proposed sensor was successfully applied for the determination of Cu2+ ion in different real and environmental samples and as indicator electrode for potentiometric titration of Cu2+ ion with EDTA.  相似文献   

13.
Membrane electrodes for the determination of glutathione   总被引:1,自引:0,他引:1  
Four glutathione (GSH)-selective electrodes were developed with different techniques and in different polymeric matrices. Precipitation-based technique with bathophenanthroline-ferrous as cationic exchanger in polyvinyl chloride (PVC) matrix was used for sensor 1 fabrication. β-Cyclodextrin (β-CD)-based technique with either tetrakis(4-chlorophenyl)borate (TpClPB) or bathophenanthroline-ferrous as fixed anionic and cationic sites in PVC matrix was used for fabrication of sensors 2 and 3, respectively.β-CD-based technique with TpClPB as fixed anionic site in polyurethane (Tecoflex) matrix was used for sensor 4 fabrication. Linear responses of 1 × 10−5 to 1 × 10−4 M and 1 × 10−6 to 1 × 10−3 M with slopes of 37.5 and 32.0 mV/decade within pH 7-8 were obtained by using electrodes 1 and 3, respectively. On the other hand, linear responses of 1 × 10−5 to 1 × 10−2 and 1 × 10−5 to 1 × 10−3 M with slopes of 47.9 and 54.3 mV/decade within pH 5-6 were obtained by using electrodes 2 and 4, respectively. The percentage recoveries for determination of GSH by the four proposed GSH-selective electrodes were 100 ± 1, 100.5 ± 0.7, 100 ± 1 and 99.0 ± 0.8% for sensors 1, 2, 3 and 4, respectively. Determination of GSH in capsules by the proposed electrodes revealed their applicability for determination of GSH in its pharmaceutical formulations. Also, they were used to determine GSH selectively in presence of its oxidized form (GSSG). Sensor 4 was successfully applied for determination of glutathione in plasma with average recovery of 100.4 ± 1.11%. The proposed method was compared with a reported one. No significant difference for both accuracy and precision was observed.  相似文献   

14.
A supported liquid and a poly(vinyl chloride) (PVC)-based membrane selective for dodecylsulfate (DS) ion are described. The active element is a membrane containing a dissolved ion association complex of DS with cetylpyridinium (CP+) cation. The supported liquid membrane electrode (acetophenone as solvent) showed a Nernstian response towards the DS anion over the concentration range of sodium dodecylsulfate (SDS) from 8.3×10−3 to 1.0×10−6 mol dm−3 at 25 °C. The proposed electrode also showed a super-Nernstian potential response (108±2 mV decade−1) at low concentrations (1.0×10−9 to 1.0×10−6 mol dm−3). Moreover, this electrode showed good selectivity and precision (R.S.D.?2.0%), and was usable within the pH range 4.0-6.8. The proposed electrode revealed a lower limit of detection of 6.3×10−7 mol dm−3 and improved selectivity in comparison with the some previously reported DS ion selective electrodes. The isothermal temperature coefficient of this electrode amounted to −0.001 V °C−1. The liquid membrane electrode may find application in the direct determination of SDS by the standard addition method at pH 5.0, and in the physicochemical studies of surfactant solutions.  相似文献   

15.
Two enantioselective, potentiometric membrane electrodes based on α- and γ-cyclodextrins were proposed for the assay of R-baclofen. The slopes of the electrodes were 59.50 and 51.00 mV/pR-baclofen for α- and γ-cyclodextrin-based electrodes, respectively. The detection limits of the proposed electrodes were 7 × 10−9 mol l−1 for α-cyclodextrin-based electrode and 1.44 × 10−10 mol l−1 for γ-cyclodextrin-based electrode. The enantioselectivity was determined over S-baclofen. The proposed electrodes can be employed for the assay of R-baclofen raw materials and its pharmaceutical formulation, Norton-Baclofen® tablets. The surfaces of the electrodes are stable and easily renewable by polishing on alumina paper.  相似文献   

16.
Trace amounts of Sc(III) and Y(III) can react with [PW11O39]7− to form the ternary Keggin-type complexes: [P(ScIIIW11)O40]6− and [P(YIIIW11)O40]6− having high molar absorptivities in the UV region. Since the rate of the complex-formation was very rapid and the kinetically stable ternary anions migrated in the capillary with different electrophoretic mobilities, the complex-formation reaction was applied to the simultaneous CE determination of Sc(III) and Y(III) with direct UV detection at 250 nm. For both Sc(III) and Y(III), the pre-column method provided linear calibration curves in the range of 2 × 10−7 to 1 × 10−5 M; the respective detection limits were 1 × 10−7 M (the signal-to-noise ratio = 3). The proposed method was successfully applied to the determination of Sc(III) and Y(III) in river water.  相似文献   

17.
A new molecularly imprinted electrochemiluminescence (ECL) sensor was proposed for highly sensitive and selective determination of ultratrace Be2+ determination. The complex of Be2+ with 4-(2-pyridylazo)-resorcinol (PAR) was chosen as the template molecule for the molecularly imprinted polymer (MIP). In this assay, the complex molecule could be eluted from the MIP, and the cavities formed could then selectively recognize the complex molecules. The cavities formed could also work as the tunnel for the transfer of probe molecules to produce sound responsive signal. The determination was based on the intensity of the signal, which was proportional to the concentrations of the complex molecule in the sample solution, and the Be2+ concentration could then be determined indirectly. The results showed that in the range of 7 × 10−11 mol L−1 to 8.0 × 10−9 mol L−1, the ECL intensity had a linear relationship with the Be2+ concentrations, with the limit of detection of 2.35 × 10−11 mol L−1. This method was successfully used to detect Be2+ in real water samples.  相似文献   

18.
Hassan SS  Elnemma EM  Mohamed AH 《Talanta》2005,66(4):1034-1041
Two novel membrane sensors sensitive and reasonably selective for Cu2+ ions are described. These are based on the use of newly synthesized cyclic tetrapeptide derivatives as neutral ionophores and sodium tetraphenylborate (NaTPB) as an anionic excluder in plasticized PVC membranes. The sensors exhibit fast and stable near-Nernstian response over the concentration range 1.0 × 10−6 mol l−1 to 1.0 × 10−2 mol l−1 Cu2+ with a cationic slope of 30.2-25.9 mV per decade at pH 4.5-7 with a lower detection limit of 0.05-0.13 μg ml−1. Effects of plasticizers, lipophilic salts and various foreign common ions are tested. The sensors display long life-span, long term stability, high reproducibility, and short response time. Selectivity of both sensors is significantly high for Cu2+ over Fe3+, Al3+, Zn2+, Cd2+, Hg2+, Ni2+, Co2+, Mn2+, alkaline earth and alkali metal ions. The sensors are used for direct measurement of copper content in different rocks and industrial wastewater samples from electroplating factories. The results agree fairly well with data obtained using atomic absorption spectrometry.  相似文献   

19.
Changlun Tong  Zhou Hu 《Talanta》2007,71(2):816-821
The fluorescence intensity of the enoxacin (ENX)-Tb3+ complex enhanced by DNA was studied. On the basis of this study, an environmentally friendly fluorescence probe of enoxacin-Tb3+ for the determination of single-stranded and double-stranded DNA was developed. Under the optimal conditions, the enhanced fluorescence intensity was in proportion to the concentration of DNA in the range of 2.0 × 10−8 to 2.0 × 10−6 g mL−1 for hsDNA, 1.0 × 10−8 to 1.0 × 10−6 g mL−1 for ctDNA and 5.0 × 10−9 to 1.0 × 10−6 g mL−1 for thermally denatured ctDNA. The detection limits (S/N = 3) were 5.0, 9.0 and 3.0 ng mL−1, respectively. The interaction modes between ENX-Tb3+ and DNA and the mechanism of the fluorescence enhancement were also discussed in details. The experimental results from UV absorption spectra, fluorescence spectra and the competing combination tests between the ENX-Tb3+ complex and EB probe indicated that the possible interaction modes between enoxacin-Tb3+ complex and DNA had at least two different binding modes: the electrostatic binding and the intercalation binding. Additionally, this fluorescence probe was used to study the interaction between heavy metals and DNA.  相似文献   

20.
Fei Wang  Xiaohan Wei  Shusheng Zhang 《Talanta》2010,80(3):1198-1204
The π-A isotherms and UV-vis spectra of the transferred films suggested that the monolayer of p-tert-butylthiacalix[4]arene can coordinate with Hg2+ at the air-water surface. From these observations, a glassy carbon electrode coated with Langmuir-Blodgett film of p-tert-butylthiacalix[4] arene as a new voltammetric sensor is designed for the determination of trace amounts of Hg2+. Compared with bare glassy carbon electrode and modified glassy carbon electrode using direct coating method, the Langmuir-Blodgett film-modified electrode can greatly improve the measuring sensitivity of Hg2+. Under the selected conditions, the Langmuir-Blodgett film-modified electrode in 0.1 mol L−1 H2SO4 + 0.01 mol L−1 KCl solution shows a linear voltammetric response for Hg2+ in the range of 5.0 × 10−10 to 1.5 × 10−7 mol L−1, with a detection limit of 2.0 × 10−10 mol L−1. The proposed method was also applied to determine Hg2+ in water samples (tap, lake and river water). In addition, the fabricated electrode exhibited a distinct advantage of simple preparation, non-toxicity, good reproducibility and good stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号