首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oligonucleotide sequences related to the normal and mutated rpoB genes of Mycobacterium tuberculosis are detected using a surface plasmon resonance (SPR) biosensor system. A bioselective element was prepared by immobilizing the thiol-modified oligonucleotides of the selected sequence (the capture probe P2) that contains the mutated TCG → TTG codon 531 (evoking drug resistance) of the rpoB gene of M. tuberculosis on a gold sensor surface. Specific hybridization between immobilized probe P2 and complementary target T2 gave the highest sensor response, single-base mismatched oligonucleotide TN (corresponding to the normal gene sequence) produced somewhat smaller response and no response was observed at injection of noncomplementary oligonucleotide TC. The P2-T2 hybridization efficiency is calculated ca. 30% (5 × 1012 molecules cm−2), and the lowest detection limit of T2 was 10 nM. An extended T2E oligonucleotide sequence consisting of T2 sequence and additional 24 nucleotides was shown to cause more pronounced sensor response (at least 5 nM T2E was easily detected). Injection into the sensor cell of the oligonucleotides complementary to the free additional part of T2E after P2-T2E hybridization gave a significant additional SPR response, thus showing that the sandwich hybridization format further improves the sensor sensitivity and decreases the lowest detection limit. The experimental results on surface hybridization between the studied oligonucleotides were in good agreement with thermodynamic parameters of the hybridization calculated for solution conditions. The described approach could be proposed as a basis for creating a biosensor for real-time and label-free diagnostics of drug resistant tuberculosis.  相似文献   

2.
Carbohydrate based fluorescent sensors S1 and S2 have been developed by fluorogenic dual click chemistry and are characterized by various spectroscopic techniques. Both the fluorescent probes displayed highly selective detection of Cu2+ ions by means of fluorescence quenching. The job plot experiment suggested 1:1 complexation of probes S1 and S2 with Cu2+ ions having detection limit of 6.99 μM and 7.30 μM, respectively. The binding constants for S1-Cu2+ and S2-Cu2+ complexation were evaluated to be 3.34 × 103 M−1 and 5.93 × 103 M−1, respectively.  相似文献   

3.
The iron(III) and cobalt(III) complexes of 2,3,7,8,12,13,17,18-octakis(benzylthio)-5,10,15,20-tetraazaporphyrin, (OBTAP) were synthesized and incorporated into PVC matrix as ionophores to fabricate anion selective membrane electrodes that exhibit selective potentiometric response to azide and nitrite ions, respectively. The membrane of [Fe(OBTAP)]+ (III) with a composition of 6:190:200 (III:DBP:PVC) (w/w), and of [Co(OBTAP)]+ (IV) with a composition of 10:148:200 (IV:DOP:PVC) (w/w), i.e. 1a and 2b, respectively (where DBP:dibutylphthalate and DOP=dioctylphthalate) gave the best performance. The membrane 1a showed a slope of 29.2±0.2 mV per decade of activity for N3 in the working concentration range of 8.9×10−6 to 1.0×10−1 M. The membrane 2b showed a slope of 30.0±0.2 mV per decade of activity for NO2 in the working concentration range of 1.1×10−5 to 1.0×10−1 M. The membranes worked satisfactorily in the pH range of 4.3-10.5 (1a) and 2.8-6.4 (2b) and had fast response time of 12±2 and 13±2 s, respectively. Electrodes exhibited a high degree of selectivity for N3 and NO2, respectively, over several other monovalent and bivalent anions. Only SCN and S2− (at >1.0×10−4 M) cause moderate interference for electrode 1a and Cl and S2− (at >1.0×10−5 M) for electrode 2b. They gave reproducible results with the relative standard deviation in the observed values of potentials (σ) of 1.96 and 1.80 mV for electrodes 1a and 2b, respectively, from the least-squares fit line. The 90% confidence limit lies within ±0.2 mV per decade of activity. Reproducible results were obtained over a period of 5 months. Their performance in non-aqueous solvent mixtures having up to 50% (v/v) methanol, ethanol and acetone were evaluated and were found satisfactory. The proposed sensors are superior in terms of detection limit and response time in comparison to the reported ones.  相似文献   

4.
Praseodymium ion selective polyvinyl chloride (PVC) membrane sensors, based on two new Schiff's bases 1,3-diphenylpropane-1,3-diylidenebis(azan-1-ylidene)diphenol (M1) and N,N′-bis(pyridoxylideneiminato) ethylene (M2) have been developed and studied. The sensor having membrane composition of PVC: o-NPOE: ionophore (M1): NaTPB (w/w; mg) of 150: 300: 8: 5 showed best performances in comparison to M2 based membranes. The sensor based on (M1) exhibits the working concentration range 1.0 × 10−8 to 1.0 × 10−2 M with a detection limit of 5.0 × 10−9 M and a Nernstian slope 20.0 ± 0.3 mV decade−1 of activity. It exhibited a quick response time as <8 s and its potential responses were pH independent across the range of 3.5-8.5.The influence of the membrane composition and possible interfering ions have also been investigated on the response properties of the electrode. The sensor has been found to work satisfactorily in partially non-aqueous media up to 15% (v/v) content of methanol, ethanol or acetonitrile and could be used for a period of 3 months. The selectivity coefficients determined by using fixed interference method (FIM) indicate high selectivity for praseodymium(III) ions over wide variety of other cations. To asses its analytical applicability the prepared sensor was successfully applied for determination of praseodymium(III) in spiked water samples.  相似文献   

5.
A series of nickel (II) complexes (L)NiCl2 (7-9) and (L)NiBr2 (10-12) were prepared by the reactions of the corresponding 2-carboxylate-6-iminopyridine ligands 1-6 with NiCl2 · 6H2O or (DME)NiBr2 (DME = 1,2-dimethoxyethane), respectively. All the complexes were characterized by IR spectroscopy and elemental analysis. Solid-state structures of 7, 8, 10, 11 and 12 were determined by X-ray diffraction. In the cases of 7, 8 and 10, the ligands chelate with the nickel centers in tridentate fashion in which the carbonyl oxygen atoms coordinate with the metal centers, while the carbonyl oxygen atoms are free from coordinating with the nickel centers in 11 and 12. Upon activation with methylaluminoxane (MAO), these complexes are active for ethylene oligomerization (up to 7.97 × 105 g mol−1 (Ni) h−1 for 11 with 2 equivalents of PPh3 as auxiliary ligand) and/or polymerization (1.37 × 104 g mol−1 (Ni) h−1 for 9). The ethylene oligomerization activities of 7-12 were significantly improved in the presence of PPh3 as auxiliary ligands. The effects of the coordination environment and reaction conditions on the ethylene catalytic behaviors have been discussed.  相似文献   

6.
Starting from 6-(pN,N-dimethylanilinyl)fulvene (1a) or 6-(pentamethylphenyl)fulvene (1b) [1,2-di(cyclopentadienyl)-1,2-di(pN,N-dimethylaminophenyl)ethanediyl] titanium dichloride (2a) and [1,2-di(cyclopentadienyl)-1,2-bis(pentamethylphenyl)ethanediyl] titanium dichloride (2b) and their corresponding dithiocyanato complexes (3a, 3b) were synthesized. Titanocene 2b did not show a cytotoxic effect, but when 2a was tested against pig kidney carcinoma cells (LLC-PK) or human ovarian carcinoma cells (A2780/cp70) inhibitory concentrations (IC50) of 2.7 × 10−4 and 1.9 ×  10−4 M, respectively, were observed.  相似文献   

7.
The FeCl3-mediated homo-coupling of 4,5-bis(alkylthio)-4′-tetrathiafulvalenylmagnesium bromide 5 produced the corresponding bitetrathiafulvalene derivatives 2a-d in moderate yields (25-51%). Bitetrathiafulvalenes 2c and 2d having long alkylthio chains formed nanostructures and showed bulk electric conductivities (σrt = 2.6 − 8.0 × 10−5 S cm−1) in the neutral state owing to the fastener effect. Interestingly, the nanofiber of tetrakis(dodecylthio)bitetrathiafulvalene 2d exhibited a p-type semiconductivity as detected by AFM.  相似文献   

8.
The synthesis and electrochemical properties of new cobalt and manganese phthalocyanine complexes, tetra-substituted with 3,4-(methylendioxy)-phenoxy at the peripheral (complexes 3 and 5) and non-peripheral (complexes 4 and 6) positions, are reported. Complexes 3 and 4 showed Q-band absorption, in DMF, at 668 and 686 nm, respectively while Q-band due to complexes 5 and 6 appeared at 732 and 760 nm, respectively in CHCl3. All the complexes showed well resolved redox processes attributed to both metal and ring based processes. Complexes 3 and 4 showed four redox processes, labeled I, II, III and IV. For complex 3, process I (CoIPc−2/CoIPc−3) was observed at −1.45 V, II (CoIIPc−2/CoIPc−2) at −0.38 V, III (CoIIIPc−2/CoIIPc−2) at +0.49 V and IV (CoIIIPc−1/CoIIIPc−2) at +0.97 V versus Ag|AgCl. Similar processes were observed for complex 4 at −1.36 V, −0.27 V, +0.56 V, +1.03 V versus Ag|AgCl, respectively. Complexes 5 and 6 showed two redox processes (I and II). For complex 5, these processes appeared at −0.79 V (MnIIPc−2/MnIIPc−3, I) and −0.07 V versus Ag|AgCl (MnIIIPc−2/MnIIPc−2, II), while for complex 6, they were observed at −0.86 V and −0.04 V versus Ag|AgCl. Spectroelectrochemistry was used to probe and confirm the origin of these processes.  相似文献   

9.
Cobalt(II) (1) and cobalt(III) (2) complexes of tridentate ligand, imidazole terpyridine (Itpy), have been synthesized and characterized by both spectroscopic and electrochemical techniques. Single crystal X-ray diffraction studies of complexes 1 and 2 shows that the complexes belong to monoclinic crystal system, with the two Itpy ligands coordinated to the central metal ion. The binding behavior of both the cobalt complexes to calf thymus DNA has been investigated by UV–Vis, fluorescence spectroscopy, viscosity and electrochemical measurements. The results suggest that complexes 1 and 2 bind to DNA through intercalation. The intrinsic DNA binding constant values obtained from absorption spectral titration studies were found to be (5.07 ± 0.12) × 103 M−1 and (7.46 ± 0.16) × 103 M−1, respectively, for complexes 1 and 2. Gel electrophoresis studies with the cobalt complexes show that while complex 1 cleaves DNA in the presence of hydrogen peroxide, complex 2 cleaves DNA in the presence of ascorbic acid and hydrogen peroxide.  相似文献   

10.
11.
N,N′,N″,N′′′-1,5,8,12-tetraazadodecane-bis(salicylaldiminato)(H2L) has been used as ionophore for preparing Mn2+ selective sensor. Membranes of different composition with regard to ratio of H2L:PVC:NPOE:NaTPB have been prepared and investigated. The best performance was obtained with the membrane of composition 10:150:150:10 (H2L:PVC:NPOE:NaTPB) (w/w; mg). This membrane generated linear potential response in the concentration range of 5.0 × 10−6 to 1.0 × 10−1 M with a Nernstian slope of 30.0 mV/decade of activity and fast response time (10 s). Hydrogen ion does not effect to the performance of sensor in the pH range 3.0-6.5. The sensor was found to be sufficient selective for Mn2+ over a number of alkali, alkaline and heavy metal ions and could therefore be used for the determination of manganese in various samples by direct potentiometry.  相似文献   

12.
A series of N-(2-pyridyl)benzamides (1)-(11) and their nickel complexes, [N-(2-pyridyl)benzamide]dinickel(II) di-μ-bromide dibromide (12)-(16) and (aryl)[N-(2-pyridyl)benzamido](triphenylphosphine)nickel(II) (17)-(24), were synthesized and characterized. The single-crystal X-ray analysis revealed that 12 and 14 are binuclear nickel complexes bridged by bromine atoms and each nickel atom adopts a distorted trigonal bipyramidal geometry. The key feature of the complexes 17, 19 and 23 is each has a six-membered nickel chelate ring including a deprotonated secondary nitrogen atom and an O-donor atom. The nickel complexes show moderate to high catalytic activity for ethylene oligomerization with methylaluminoxane (MAO) as cocatalyst. The activity of 12-16/MAO systems is up to 3.3 × 104 g mol−1 h−1 whereas for 17-24/MAO systems it is up to 4.94 × 105 g mol−1 atm−1 h−1. The influence of Al/Ni molar ratio, reaction temperature, reaction period and PPh3/Ni molar ratio on catalytic activity was investigated.  相似文献   

13.
Three fluorescent quinazolines thiophen-2-yl-5,6-dihydrobenzo-[4,5]imidazo[1,2-c]quinazoline (1), pyridin-3-yl-5,6-dihydrobenzo-[4,5]imidazo-[1,2-c]quinazoline (2) and phenyl-5,5′,6,6′-dihydrobenzo-[4,4′,5,5′]imidazo-[1.1′,2-c,2′-c]quinazoline (3) have been synthesized. Structures of 1 and 3 have been authenticated crystallographically. Quinazolines 1-3 exhibit highly selective ‘on-off’ switching for Hg2+ ions. The fluorescence intensity displayed a linear relationship with respect to Hg2+ concentration (0.1-1.0 μM; R2 = 0.99) with detection limit of 2.0 × 10−7 M.  相似文献   

14.
Using 1064 nm excited surface-enhanced Raman spectroscopy (SERS) a well known intercalator, ethidium bromide (EB), and a structurally related compound, 4-methyl-2,7-diamino-5,10-diphenyl-4,9-diazapyrenium hydrogensulfate (ADAP), have been studied. Concentration dependent SERS spectra of both aromatic species (1 × 10−7-5 × 10−5 M) indicated existence of dimeric associates at high concentration and an equilibrium shift towards monomers with a concentration decrease. Interactions of the intercalating molecules with DNA have been studied for various intercalator/DNA (base pair) molar ratios ranging from 10/1 to 1/10. In colloidal samples containing an intercalator in excess relative to DNA binding sites (from 10/1 to 2/1) enhancement of the Raman scattering gradually weakened, indicating a decrease in a number of free molecules adsorbed on the metal surface due to binding with DNA. At the drug/DNA ratios of 1/2 and 1/5 weaker but observable SERS bands indicated insertion of the drug molecules between the base pairs (intercalation strongly diminished interaction of the drug molecules with metal surface) as well as non-intercalative binding of the drug molecules able to stay in closer contact with a metal surface. A total intercalation of EB and ADAP molecules (intercalator/DNA of 1/7 and 1/10) resulted in almost complete loss of the SERS signal. Intensity of the SERS spectra of the intercalator/DNA complexes relative to the SERS intensity of the free intercalating molecules diminished to a lesser degree for ADAP/DNA than for EB/DNA. The obtained difference was attributed to a larger aromatic surface of the ADAP molecules which, although intercalated, could be positioned near the enhancing nanoparticles, unlike the smaller EB molecules which were deeply inserted within the DNA helix.  相似文献   

15.
The self-assembly of amphiphilic pyrene-cored poly(aryl ether) dendrimers has been studied. Pyrene excimer emission at 500 nm from the higher generation 6 is observed in KOH aqueous solution at the concentration as low as 1.8 × 10−5 M, while the excimer emission from lower generation 5 could not be detected at 3.5 × 10−5 M. The results indicate that the self-aggregation in higher generation dendrimer takes place more efficiently than in lower generation in aqueous solution.  相似文献   

16.
Four iron(II) and cobalt(II) complexes ligated by 2,6-bis(4-nitro-2,6-R2-phenylimino)pyridines, LMCl2 (1: R = Me, M = Fe; 2: R = iPr, M = Fe; 3: R = Me, M = Co; 4: R = iPr, M = Co) have been synthesized and fully characterized, and their catalytic ethylene polymerization properties have been investigated. Among these complexes, the iron(II) pre-catalyst bearing the ortho-isopropyl groups (complex 2) exhibited higher activities and produced higher molecular weight polymers than the other complexes in the presence of methylaluminoxane (MAO). A comparison of 2 with the reference non-nitro-substituted catalyst (2,6-bis(2,6-diisopropylphenylimino)pyridyl)FeCl2 (FeCat 5) revealed a modest increase of the catalytic activity and longer lifetime upon substitution of the para-positions with nitro groups (activity up to 6.0 × 103 kg mol−1 h−1 bar−1 for 2 and 4.8 × 103 kg mol−1 h−1 bar−1 for 5), converting ethylene to highly linear polyethylenes with a unimodal molecular weight distribution around 456.4 kg mol−1. However, the iron(II) pre-catalyst 1 on changing from ortho-isopropyl to methyl groups displayed much lower activities (over an order of magnitude) than 2 under mild conditions. As expected, the cobalt analogues showed relatively low polymerization activities.  相似文献   

17.
Second-order nonlinear optical chromophores incorporating the ferrocenyl group as an electron donor and 3-dicyanomethylidene-1-indanone and 1,3-bis(dicyanomethylidene)indane acceptor groups, connected by a conjugated polyenic bridge of varied length (2[n] and 3[n], respectively) have been synthesized. The electronic absorption spectra of these compounds display in the visible region bands attributable to π-π* and metal-to ligand charge transfer (MLCT) transitions. The energies of these transitions are close to those reported earlier for ferrocenyl D-π-A chromophores with the strongest acceptor groups, e.g., with the 3-dicyanomethylidene-2,3-dihydrobenzothiophene-1,1-dioxide group (1[n]) [V. Alain, M. Blanchard-Desce, C.-T. Chen, S.R. Marder, A. Fort, M. Barzoukas, Synt. Met. 81 (1996) 133]. The solid-state structure of 2[3], determined by X-ray diffraction shows a significant reduction of the bond length alternation (BLA), 0.05 Å, suggesting high first hyperpolarizability. However, a centrosymmetrical packing of molecules of this compound in the crystal excludes its second harmonic generation ability. The μβ values of 2[n] and 3[n], determined by the EFISH technique at 1907 nm are high and increase with the increasing length of the conjugated π-bridge. The highest value of μβ (8720 × 10−48 esu) was determined for 3[4], which is close to that reported for 1[4] (11 200 × 10−48 esu), the highest value found for a ferrocenyl D-π-A chromophore until now.  相似文献   

18.
A series of nickel (II) complexes ligated by 2-imino-1,10-phenanthrolines were synthesized and characterized by elemental and spectroscopic analysis as well as by single-crystal X-ray crystallography. X-ray crystallographic analysis reveals complexes 3, 5, 7 and 11 as the five-coordinated distorted trigonal-bipyramidal geometry. Upon activation with Et2AlCl, these complexes exhibited considerably high activity for ethylene oligomerization (up to 3.76 × 107 g mol−1(Ni) h−1 for 12 with 10 equiv. of PPh3). The ligand environment and reaction conditions significantly affect the catalytic activity of their nickel complexes.  相似文献   

19.
Two enantioselective, potentiometric membrane electrodes based on [5,6]fullerene-C70 (1) and diethyl (1,2-methanofullerene C70)-71-71-dicarboxylate (2) immobilized in carbon paste, were designed for the enantioanalysis of R-deprenyl. The electrodes exhibited near-Nernstian slopes: 57.90 (1) and 59.00 mV/decade of concentration (2), respectively with low limits of detection 5.9 × 10−11 (1) and 9.6 × 10−11 mol/L (2), respectively. The linear concentration ranges are between 10−10 and 10−4 mol/L (1) and between 10−9 and 10−4 mol/L (2), respectively. The different characteristics involved in the molecular interaction between R-deprenyl and C70 fullerenes were explained, namely (i) the stability of each molecule and (ii) the explanation of the molecular mechanism of interaction, using restricted Hartree-Fock theory, 3-21G(*) RHF-basis set. Furthermore, two intermolecular forces of interactions confer the stability of the electrodes; electrostatic interaction and moderate hydrogen bond interaction. Stability and feasibility of all the generated structures involved in this analysis were supported by their respective fundamental frequencies and energy minima.R-deprenyl can be recovered with average recoveries higher than 99.10% (RSD < 0.03%) from synthetic mixtures between R- and S-deprenyl. The high selectivity and enantioselectivity made possible the enantioanalysis of R-deprenyl in its pharmaceutical formulations.  相似文献   

20.
Series of 2-benzoxazole-1,10-phenanthrolines (L1-L4) and 2-oxazoline-1,10-phenanthrolines (L5-L8) were synthesized and used as tridentate N^N^N ligands in coordinating with metal (nickel, cobalt or iron) chlorides. Their metal complexes, nickel(II) (Ni1-Ni8), cobalt(II) (Co1-Co8) and iron(II) (Fe1-Fe8), were characterized by elemental and IR spectroscopic analyses. The molecular structures of the ligand L2 and the complexes Ni3, Co1, Co3 and Fe2 have been determined by the single-crystal crystallography. The nickel complex Ni3 and iron complex Fe2 display an octahedral geometry, whereas cobalt complex Co1 is with a distorted bipyramidal geometry and Co3 as square pyramidal geometry. At 10 atm ethylene, all the complexes showed good activities in ethylene dimerization upon activation with appropriate aluminum cocatalysts; the nickel complexes gave the activity up to 3.11 × 106 g mol−1(Ni) h−1 upon activation with diethylaluminum chloride (Et2AlCl), meanwhile the cobalt and iron complexes showed activities up to 1.51 × 106 g mol−1(Co) h−1 and 1.89 × 106 g mol−1(Fe) h−1, individually, upon activation with modified methylaluminoxane (MMAO).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号