首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we investigate the heat transfer of a viscous fluid flow over a stretching/shrinking sheet with a convective boundary condition. Based on the exact solutions of the momentum equations, which are valid for the whole Navier–Stokes equations, the energy equation ignoring viscous dissipation is solved exactly and the effects of the mass transfer parameter, the Prandtl number, and the wall stretching/shrinking parameter on the temperature profiles and wall heat flux are presented and discussed. The solution is given as an incomplete Gamma function. It is found the convective boundary conditions results in temperature slip at the wall and this temperature slip is greatly affected by the mass transfer parameter, the Prandtl number, and the wall stretching/shrinking parameters. The temperature profiles in the fluid are also quite different from the prescribed wall temperature cases.  相似文献   

2.
Hypersonic rarefied gas flow over blunt bodies in the transitional flow regime (from continuum to free-molecule) is investigated. Asymptotically correct boundary conditions on the body surface are derived for the full and thin viscous shock layer models. The effect of taking into account the slip velocity and the temperature jump in the boundary condition along the surface on the extension of the limits of applicability of continuum models to high free-stream Knudsen numbers is investigated. Analytic relations are obtained, by an asymptotic method, for the heat transfer coefficient, the skin friction coefficient and the pressure as functions of the free-stream parameters and the geometry of the body in the flow field at low Reynolds number; the values of these coefficients approach their values in free-molecule flow (for unit accommodation coefficient) as the Reynolds number approaches zero. Numerical solutions of the thin viscous shock layer and full viscous shock layer equations, both with the no-slip boundary conditions and with boundary conditions taking into account the effects slip on the surface are obtained by the implicit finite-difference marching method of high accuracy of approximation. The asymptotic and numerical solutions are compared with the results of calculations by the Direct Simulation Monte Carlo method for flow over bodies of different shape and for the free-stream conditions corresponding to altitudes of 75–150 km of the trajectory of the Space Shuttle, and also with the known solutions for the free-molecule flow regine. The areas of applicability of the thin and full viscous shock layer models for calculating the pressure, skin friction and heat transfer on blunt bodies, in the hypersonic gas flow are estimated for various free-stream Knudsen numbers.  相似文献   

3.
The present paper is concerned with the study of flow and heat transfer characteristics in the unsteady laminar boundary layer flow of an incompressible viscous fluid over continuously stretching permeable surface in the presence of a non-uniform heat source/sink and thermal radiation. The unsteadiness in the flow and temperature fields is because of the time-dependent stretching velocity and surface temperature. Similarity transformations are used to convert the governing time-dependent nonlinear boundary layer equations for momentum and thermal energy are reduced to a system of nonlinear ordinary differential equations containing Prandtl number, non-uniform heat source/sink parameter, thermal radiation and unsteadiness parameter with appropriate boundary conditions. These equations are solved numerically by applying shooting method using Runge–Kutta–Fehlberg method. Comparison of numerical results is made with the earlier published results under limiting cases. The effects of the unsteadiness parameter, thermal radiation, suction/injection parameter, non-uniform heat source/sink parameter on flow and heat transfer characteristics as well as on the local Nusselt number are shown graphically.  相似文献   

4.
This study deals with the temperature-dependent viscosity effects on the natural convection boundary layer on a horizontal elliptical cylinder with constant surface heat flux. The mathematical problem is reduced to a pair of coupled partial differential equations for the temperature and the stream function, and the resulting nonlinear equations are solved numerically by cubic spline collocation method. Results for the heat transfer characteristics are presented as functions of eccentric angle for various values of viscosity variation parameters, Prandtl numbers and aspect ratios. Results show that an increase in the viscosity variation parameter tends to accelerate the fluid flow near the surface and increase the maximum velocity, thus decreasing the velocity boundary layer thickness. As the viscosity variation parameter is increased, the surface temperature tends to decrease, thus increasing the local Nusselt number. Moreover, the local Nusselt number of the elliptical cylinder increases as the Prandtl number of the fluid is increased.  相似文献   

5.
In this paper we present numerical solutions to the unsteady convective boundary layer flow of a viscous fluid at a vertical stretching surface with variable transport properties and thermal radiation. Both assisting and opposing buoyant flow situations are considered. Using a similarity transformation, the governing time-dependent partial differential equations are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by a second order finite difference scheme known as the Keller-Box method. The numerical results thus obtained are analyzed for the effects of the pertinent parameters namely, the unsteady parameter, the free convection parameter, the suction/injection parameter, the Prandtl number, the thermal conductivity parameter and the thermal radiation parameter on the flow and heat transfer characteristics. It is worth mentioning that the momentum and thermal boundary layer thicknesses decrease with an increase in the unsteady parameter.  相似文献   

6.
In this paper, heat and mass transfer analysis for boundary layer stagnation-point flow over a stretching sheet in a porous medium saturated by a nanofluid with internal heat generation/absorption and suction/blowing is investigated. The governing partial differential equation and auxiliary conditions are converted to ordinary differential equations with the corresponding auxiliary conditions via Lie group analysis. The boundary layer temperature, concentration and nanoparticle volume fraction profiles are then determined numerically. The influences of various relevant parameters, namely, thermophoresis parameter Nt, Brownian motion parameter Nb, Lewis number Le, suction/injection parameter S, permeability parameter k1, source/sink parameter λ and Prandtl parameter Pr on temperature and concentration as well as wall heat flux and wall mass flux are discussed. Comparison with published results is presented.  相似文献   

7.
We investigate the steady two-dimensional flow of an incompressible water based nanofluid over a linearly semi-infinite stretching sheet in the presence of magnetic field numerically. The basic boundary layer equations for momentum and heat transfer are non-linear partial differential equations. Lie symmetry group transformations are used to convert the boundary layer equations into non-linear ordinary differential equations. The dimensionless governing equations for this investigation are solved numerically using Nachtsheim–Swigert shooting iteration technique together with fourth order Runge–Kutta integration scheme. Effects of the nanoparticle volume fraction ϕ, magnetic parameter M, Prandtl number Pr on the velocity and the temperature profiles are presented graphically and examined for different metallic and non-metallic nanoparticles. The skin friction coefficient and the local Nusselt number are also discussed for different nanoparticles.  相似文献   

8.
This paper presents a mathematical analysis of MHD flow and heat transfer to a laminar liquid film from a horizontal stretching surface. The flow of a thin fluid film and subsequent heat transfer from the stretching surface is investigated with the aid of similarity transformation. The transformation enables to reduce the unsteady boundary layer equations to a system of non-linear ordinary differential equations. Numerical solution of resulting non-linear differential equations is found by using efficient shooting technique. Boundary layer thickness is explored numerically for some typical values of the unsteadiness parameter S and Prandtl number Pr, Eckert number Ec and Magnetic parameter Mn. Present analysis shows that the combined effect of magnetic field and viscous dissipation is to enhance the thermal boundary layer thickness.  相似文献   

9.
This work presents nonsimilar boundary layer solutions for double-diffusion natural convection near a sphere with constant wall heat and mass fluxes in a micropolar fluid. A coordinate transformation is employed to transform the governing equations into nondimensional nonsimilar boundary layer equations and the obtained boundary layer equations are then solved by the cubic spline collocation method. Results for the local Nusselt number and the local Sherwood number are presented as functions of the vortex viscosity parameter, Schmidt number, buoyancy ratio, and Prandtl number. Higher vortex viscosity tends to retard the flow, and thus decreases the local convection heat and mass transfer coefficients, raising the wall temperature and concentration. Moreover, the local convection heat and mass transfer coefficients near a sphere in Newtonian fluids are higher than those in micropolar fluids.  相似文献   

10.
Numerical results are presented for heat and mass transfer effect on hydromagnetic flow of a moving permeable vertical surface. An analysis is performed to study the momentum, heat and mass transfer characteristics of MHD natural convection flow over a moving permeable surface. The surface is maintained at linear temperature and concentration variations. The non-linear coupled boundary layer equations were transformed and the resulting ordinary differential equations were solved by perturbation technique [Aziz A, Na TY. Perturbation methods in heat transfer. Berlin: Springer-Verlag; 1984. p. 1–184; Kennet Cramer R, Shih-I Pai. Magneto fluid dynamics for engineers and applied physicists 1973;166–7]. The solution is found to be dependent on several governing parameter, including the magnetic field strength parameter, Prandtl number, Schmidt number, buoyancy ratio and suction/blowing parameter, a parametric study of all the governing parameters is carried out and representative results are illustrated to reveal a typical tendency of the solutions. Numerical results for the dimensionless velocity profiles, the temperature profiles, the concentration profiles, the local friction coefficient and the local Nusselt number are presented for various combinations of parameters.  相似文献   

11.
An analysis has been carried out to study the momentum and heat transfer characteristics in an incompressible electrically conducting non-Newtonian boundary layer flow of a viscoelastic fluid over a stretching sheet. The partial differential equations governing the flow and heat transfer characteristics are converted into highly non-linear coupled ordinary differential equations by similarity transformations. The effect of variable fluid viscosity, Magnetic parameter, Prandtl number, variable thermal conductivity, heat source/sink parameter and thermal radiation parameter are analyzed for velocity, temperature fields, and wall temperature gradient. The resultant coupled highly non-linear ordinary differential equations are solved numerically by employing a shooting technique with fourth order Runge–Kutta integration scheme. The fluid viscosity and thermal conductivity, respectively, assumed to vary as an inverse and linear function of temperature. The analysis reveals that the wall temperature profile decreases significantly due to increase in magnetic field parameter. Further, it is noticed that the skin friction of the sheet decreases due to increase in the Magnetic parameter of the flow characteristics.  相似文献   

12.
This paper considers the classical problem of hydrodynamic and thermal boundary layers over a flat plate in a uniform stream of fluid. It is well known that similarity solutions of the energy equation are possible for the boundary conditions of constant surface temperature and constant heat flux. However, no such solution has been attempted for the convective surface boundary condition. The paper demonstrates that a similarity solution is possible if the convective heat transfer associated with the hot fluid on the lower surface of the plate is proportional to x?1/2. Numerical solutions of the resulting similarity energy equation are provided for representative Prandtl numbers of 0.1, 0.72, and 10 and a range of values of the parameter characterizing the hot fluid convection process. For the case of constant heat transfer coefficient, the same data provide local similarity solutions.  相似文献   

13.
In this paper, the mathematical model of free convection boundary layer flow on a solid sphere with Newtonian heating, in which the heat transfer from the surface is proportional to the local surface temperature, is considered. The transformed boundary layer equations are solved numerically using an efficient numerical scheme known as the Keller-box method. Numerical solutions are obtained for the local wall temperature, the local skin friction coefficient, as well as the velocity and temperature profiles. The features of the flow and heat transfer characteristics for different values of the Prandtl number Pr and conjugate parameter γ are analyzed and discussed.  相似文献   

14.
A numerical model is developed to examine the combined effects of Soret and Dufour on mixed convection magnetohydrodynamic heat and mass transfer in micropolar fluid-saturated Darcian porous medium in the presence of thermal radiation, non-uniform heat source/sink and Ohmic dissipation. The governing boundary layer equations for momentum, angular momentum (microrotation), energy and species transfer are transformed to a set of non-linear ordinary differential equations by using similarity solutions which are then solved numerically based on shooting algorithm with Runge–Kutta–Fehlberg integration scheme over the entire range of physical parameters with appropriate boundary conditions. The influence of Darcy number, Prandtl number, Schmidt number, Soret number and Dufour number, magnetic parameter, local thermal Grashof number and local solutal Grashof number on velocity, temperature and concentration fields are studied graphically. Finally, the effects of related physical parameters on local Skin-friction, local Nusselt number and local Sherwood number are also studied. Results showed that the fields were influenced appreciably by the Soret and Dufour effects, thermal radiation and magnetic field, etc.  相似文献   

15.
An analysis has been carried out to describe mixed convection heat transfer in the boundary layers on an exponentially stretching continuous surface with an exponential temperature distribution in the presence of magnetic field, viscous dissipation and internal heat generation/absorption. Approximate analytical similarity solutions of the highly non-linear momentum and energy equations are obtained. The present results are found to be in excellent agreement with previously published work on various special cases of the problem. Numerical results for temperature distribution and the local Nusselt number have been obtained for different values of the governing parameters. The numerical solutions are obtained by considering an exponential dependent stretching velocity and prescribed boundary temperature on the flow directional coordinate. The effects of various physical parameters like Prandtl number, Hartman number, Grashof number on dimensionless heat transfer characteristics are discussed in detail. In particular, it has been found that increase in Prandtl number decreases the skin-friction coefficient at the stretching surface, while increase in the strength of the magnetic field leads to increase in the local Nusselt number.  相似文献   

16.
17.
The steady flow and heat transfer arising due to the rotation of a non-Newtonian fluid at a larger distance from a stationary disk is extended to the case where the disk surface admits partial slip. The constitutive equation of the non-Newtonian fluid is modeled by that for a Reiner–Rivlin fluid. The fluid is subjected to an external uniform magnetic field perpendicular to the plane of the disk. The momentum equation gives rise to a highly nonlinear boundary value problem. Numerical solution of the governing nonlinear equations are obtained over the entire range of the physical parameters. The effects of slip, non-Newtonian fluid characteristics and the magnetic interaction parameter on the momentum boundary layer and thermal boundary layer are discussed in detail and shown graphically. It is observed that slip has prominent effects on the velocity and temperature fields.  相似文献   

18.
In this paper, a new family of unsteady boundary layers over a stretching flat surface was proposed and studied. This new class of unsteady boundary layers involves the flows over a constant speed stretching surface from a slot, and the slot is moving at a certain speed. Depending on the slot moving parameter, the flow can be treated as a stretching sheet problem or a shrinking sheet problem. Both the momentum and thermal boundary layers were studied. Under special conditions, the solutions reduce to the unsteady Rayleigh problem and the steady Sakiadis stretching sheet problem. Solutions only exist for a certain range of the slot moving parameter, α. Two solutions are found for −53.55° < α < −45°. There are also two solution branches for the thermal boundary layers at any given Prandtl number in this range. Compared with the upper solution branch, the lower solution branch leads to simultaneous reduction in wall drag and heat transfer rate. The results also show that the motion of the slot greatly affects the wall drag and heat transfer characteristics near the wall and the temperature and velocity distributions in the fluids.  相似文献   

19.
The steady Von Kármán flow and heat transfer of an electrically conducting non-Newtonian fluid is extended to the case where the disk surface admits partial slip. The fluid is subjected to an external uniform magnetic field perpendicular to the plane of the disk. The constitutive equation of the non-Newtonian fluid is modeled by that for a Reiner–Rivlin fluid. The momentum equations give rise to highly non-linear boundary value problem. Numerical solutions for the governing non-linear equations are obtained over the entire range of the physical parameters. The effects of slip, magnetic parameter and non-Newtonian fluid characteristics on the velocity and temperature fields are discussed in detail and shown graphically. Emphasis has been laid to study the effects of viscous dissipation and Joule heating on the thermal boundary layer. It is interesting to find that the non-Newtonian cross-viscous parameter has an opposite effect to that of the slip and the magnetic parameter on the velocity and the temperature fields.  相似文献   

20.
An analysis has been carried out to study the flow and heat transfer characteristics for MHD viscoelastic boundary layer flow over an impermeable stretching sheet with space and temperature dependent internal heat generation/absorption (non-uniform heat source/sink), viscous dissipation, thermal radiation and magnetic field due to frictional heating. The flow is generated due to linear stretching of the sheet and influenced by uniform magnetic field, which is applied vertically in the flow region. The governing partial differential equations for the flow and heat transfer are transformed into ordinary differential equations by a suitable similarity transformation. The governing equations with the appropriate conditions are solved exactly. The effects of viscoelastic parameter and magnetic parameter on skin friction and the effects of viscous dissipation, non-uniform heat source/sink and the thermal radiation on heat transfer characteristics for two general cases namely, the prescribed surface temperature (PST) case and the prescribed wall heat flux (PHF) case are presented graphically and discussed. The numerical results for the wall temperature gradient (the Nusselt number) are presented in tables and are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号