首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 146 毫秒
1.
生卫东  刘宏伟 《光学学报》1995,15(9):195-1198
报道了用两个1.5W激光二极管偏振耦合端面泵浦的声光调Q内腔倍频Nd:YAG激光器。输出532nm绿光重复频率1KHz时,最大峰值功率为2.23KW,最窄脉宽为18ns,平均功率40mW。最高重复频率30KHz。重复频率15kHZ时,最高平均率128mW。对声光调Q内倍频Nd:YAG激光器的动态特性进行了理论分析及计算。  相似文献   

2.
A compact diode-pumped passively Q-switched intracavity frequency-doubled Nd:GdVO4/KTP green-pulse laser was demonstrated, using Cr4+:YAG as a saturable absorber in a simple flat–flat cavity. With a 5.9 W incident pump power, a passively Q-switched green laser was obtained with an average power of 397 mW, repetition rate of 40 kHz, and pulse width of 40 ns, when the initial transmission of Cr4+:YAG was 85%. The shortest pulse width of 30 ns, the highest green peak power of 696 W and the maximum pulse energy of 21 μJ were obtained when the initial transmission of Cr4+:YAG was 70%. Under CW green operation, we obtained 440 mW output power.  相似文献   

3.
A LD-pumped single-frequency passively Q-switched Nd: YVO4/KTP/Cr:YAG green laser is presented. Cr:YAG plays the double role of a passive Q-switch and a Brewster plate. With 900 mW incident pump laser, single-frequency passively Q-switched green laser with average power of 86 mW, pulse width of 14.7 ns, repetition rate of 140.8 kHz and peak power of 41.6 W is obtained. Measurement shows that the pulse amplitude and period between pulses are stable within ±1.5%.  相似文献   

4.
A diode-end-pumped simultaneously Q-switched and mode-locked intracavity frequency doubled Nd:GdVO4/LBO red laser with an acousto-optic Q-switch was realized. The maximum red laser output power of 250 mW was obtained at the incident pump power of 8.3 W and the repetition rate of 10 kHz. At 5 kHz, the maximum mode-locking modulation depth of about 80% was achieved with the Q-switched pulse width of 440 ns. The red mode-locked pulse inside the Q-switched pulse had a repetition rate of 115 MHz, its average pulse width was estimated to be about 350 ps.  相似文献   

5.
郑权  赵岭 《光子学报》2002,31(1):60
报道了LD泵浦的Nd∶YAG/KTP/Cr∶YAG结构被动调Q绿光激光器.当注入泵浦功率为750mW时,获得了平均功率38mW,脉冲宽度14.7ns,重复频率20.4kHz,峰值功率126.6W的调Q绿激光输出.  相似文献   

6.
A LD-pumped, LBO intracavity frequency doubled and Cr:YAG passively Q-switched Nd:YAG green laser was reported in this letter. With 600 mW incident pump laser, Q-switched green laser with average power of 27 mW, pulse width of 15.2 ns, repetition rate of 16.4 kHz and peak power of 108.1 W was obtained.  相似文献   

7.
A diode-end-pumped high repetition rate, high peak power acousto-optical (AO) Q-switched 946 nm Nd:YAG laser was demonstrated in this paper. In our experiments, a 20 mm miniature acousto-optical Q-switch was employed in a 45 mm linear laser cavity for generating the short laser pulse. At a repetition rate of 10 kHz, a maximum average output power of 2.9 W was achieved with a pulse width of 24.4 ns, giving a peak power of 11.9 kW. To the best of our knowledge, this is the highest peak power 946 nm Nd:YAG laser at high repetition rate operation. Moreover, pulse train with good stability was also obtained at the repetition rate of 50 kHz. At an incident pump power of 22.3 W, up to an average output power of 3.5 W pulsed 946 nm laser was generated at 50 kHz with a pulse width of 69 ns, corresponding to an optical conversion efficiency of 15.7% and an average slope efficiency of 24.1%, respectively.  相似文献   

8.
Q-switching and Q-switched mode-locked Yb:Y2Ca3B4O12 lasers with an acousto-optic switch are demonstrated. In the Q-switching case, an average output power of 530 mW is obtained at the pulse repetition rate of 10.0 kHz under an absorbed pump power of 6.1 W. The minimum pulse width is 79 ns at the repetition rate of 1.7 kHz. The pulse energy and peak energy are calculated to be 231 μJ and 2.03 kW, respectively. In the Q-switched mode-locking case, the average output power of 64 mW with a mode-locked pulse repetition rate of 118 MHz and Q-switched pulse energy of 48 μJ is generated under the absorbed pump power of 6.1 W.  相似文献   

9.
A diode-pumped high-repetition-rate acousto-optically (A-O) Q-switched Nd:YVO4 laser operating at 914 nm was reported in this paper. Employing a compact linear laser cavity, at an operating repetition rate of 10 kHz, a maximum average output power of 2.2 W 914 nm laser was obtained at an incident pump power of 45.3 W, corresponding to an optical conversion efficiency of 4.9% and a slope efficiency of 8.8%. Minimum pulse width of 24 ns and maximum peak power of 8.0 kW of 914 nm laser was also achieved at an incident pump power of 40.8 W. To the best of our knowledge, this is the highest peak power of 914 nm laser at 10 kHz by far. Moreover, the highest operating repetition rate of pulsed 914 nm can even reach 100 kHz.  相似文献   

10.
We demonstrate an efficient and eye-safe wavelength intracavity optical parametric oscillator (OPO),based on a KTP crystal inside a Q-switched Nd:YVO4 laser end pumped by a fiber-coupled diode laser. Inthe acousto-optic Q-switched operation with the pulse repetition rate of 10 kHz, a 1572-nm eye-safe laser with the average power of 237 mW at the incident pump power of 5.64 W is obtained. Under the pulse repetition rate of 5 kHz, the signal light with pulse width of 2 ns and peak power of 18.5 kW is achieved.The conversion efficiency of the average power is 4.2% from pump diode to OPO signal output and thesignal pulse duration is about 13 times shorter than that of the depleted pump light.  相似文献   

11.
张斌  李颖  刘丙海 《强激光与粒子束》2020,32(10):101002-1-101002-6
成功制备了金纳米笼溶液并将其作为饱和吸收体,实现了中心波长为1106 nm的Nd:GAGG激光器的调Q运转。在输出镜透过率为3%的激光器中,在泵浦功率6.70 W下获得的最大平均输出功率为98 mW,此时对应的脉冲重复率为206 kHz,最短脉冲宽度为436 ns;在输出镜透过率为7%的激光器中,当泵浦功率为7.69 W时,得到的最大平均输出功率为121 mW,最短脉冲宽度为370 ns,对应的脉冲重复率为170 kHz。实验结果证明了金纳米笼在近红外波段激光器中用作饱和吸收体的巨大潜力。  相似文献   

12.
A high-power high-repetition-rate acousto-optically Q-switched 1342 nm laser with double Nd:YVO4 crystals pumped by fiber-coupled laser diodes is presented. The highest output power of 13.7 W was achieved with a total of 42 W pumping power in cw operation, the slope efficiency was measured as 36%, and the optical efficiency was better than 32%. In Q-switchedoperation, the highest pulse repetition rate of 100 kHz was obtained. At 50 kHz repetition rate, the laser exported 11.2 W average output power, with 60 ns average pulse width, ∼5% width stability (RMS) and ∼8% peak-power stability (RMS). At 10 kHz repetition rate, the highest average output power was measured as 6.3 W, single pulse energy was calculated as 0.63 mJ, with pulse width of 19 ns and peak-power higher than 30 kW. Combining the experimental results, we analyze and discuss some problems concerning Nd:YVO4 crystal working at 1,342 nm wavelength. PACS 42.55.-f; 42.55.Xi; 42.60.Gd  相似文献   

13.
We demonstrate a passively Q-switched Nd:LuVO4 laser at 916 nm by using a Nd, Cr:YAG crystal as the saturable absorber. As we know, it is the first time to realize the laser with a simple linear resonator. When the incident pump power increased from 14.6 W to 23.7 W, the pulse width of the Q-switched laser decreased from 24 ns to 21 ns. The pulse width was insensitive to the incident pump power in the experiment. The average output power of 288 mW with repetition rate of 39 kHz was obtained at an incident pump power of 22.5 W, with the optical-to-optical efficiency and slope efficiency 1.3% and 3.6%, respectively.  相似文献   

14.
We demonstrate a compact efficient diode-pumped acousto-optically Q-switched intracavity-frequency-tripled Nd:YVO4 blue laser. The optimum polarization state is experimentally investigated to optimize the output performance. Greater than 280 mW of 447-nm average power at a repetition rate of 25 kHz was generated with a 15-W diode pump power. At 25 kHz, the pulse width is shorter than 15 ns and the peak power is higher than 800 W.  相似文献   

15.
LD泵浦Nd:YAG激光器的连续激光输出和高重复率调Q   总被引:2,自引:0,他引:2  
用连续输出1W国产多量子阱激光二极管列阵(MQW-LDA)泵浦Nd:YAG固体激光器,连续激光输出最大功率为112mw,光-光效率为10.6%,斜效率为20%.实现了连续泵浦高重复频率(1kHz,4kHz,10kHz)调Q输出,最大峰值功率为355W,最大平均功率为43.7mw.  相似文献   

16.
We demonstrated an efficient and compact, diode-pumped passively Q-switched Nd:YVO4 laser operation at 1.064 μm wavelength with high repetition rate, using Cr4+:YAG as saturable absorber, formed with a simple flat–flat resonator. The maximum CW output power of 4.05 W was obtained at the incident pump power of 8 W. For Q-switched operation, the maximum average output power was measured to be 1.4 W with the corresponding repetition rate of 200 kHz, the pulse width of 60 ns when the initial transmission of Cr4+:YAG crystal was 85%. The shortest pulse width of 12 ns, the largest pulse energy of 36 μJ and the highest peak power of 3 kW were obtained when the Cr4+:YAG crystal with an initial transmission of 60% was used.  相似文献   

17.
基于半导体可饱和吸收镜和光纤光栅实现了稳定的2 m波段被动调Q光纤脉冲激光器,输出激光的中心波长为1958.2 nm。随着泵浦功率的增加,输出脉冲的重复频率不断增加,而对应脉冲的宽度不断减小。输出脉冲重复频率的变化范围为20~80 kHz,脉冲宽度的变化范围为490 ns~1 s。当泵浦功率为1.3 W时,调Q光纤激光器的最大平均输出功率为91 mW,脉冲重复频率为80 kHz,脉冲宽度为490 ns,对应的最大单脉冲能量约为1.14 J。  相似文献   

18.
A diode-pumped passively Q-switched Nd:LuVO4 1.34 μm laser using Co:LMA saturable absorber was successfully demonstrated. The average output power, pulse width, repetition rate of a-cut and c-cut Nd:LuVO4 lasers were studied with different output couplers. The maximum average output power of 164 mW was obtained at the pump power of 10.3 W and the narrowest pulse width of 168 ns was achieved at repetition rate of 457 kHz under pump power of 8.59 W in a-cut Nd:LuVO4 laser with T = 8%.  相似文献   

19.
周城 《光子学报》2007,36(10):1774-1776
通过合理设计精密调控各元件和温控电流,得到了平均功率为70 mW,脉冲宽度为22 ns,重复频率为14 kHz,峰值功率高达230 W的Nd3+∶GdVO4/Cr4+YAG红外脉冲激光器.先采用双凸透镜组合成的望远镜系统对1 063 nm的红外激光进行扩束,再对该光束聚焦,最后经双轴晶体LBO倍频后,得到了平均功率为40.6 mW,脉冲宽度为16 ns,重复频率为14 kHz,峰值功率高达181 W的绿光激光输出,1063 nm→532 nm的转换效率高达58%.测量了532 nm的光谱线宽曲线.解释了该聚焦方法比单一薄透镜效果明显好的原因,并指出了这种聚焦方法的使用对象.  相似文献   

20.
We demonstrate a passively Q-switched Nd:KLu W laser with a semiconductor sat urable absorber mirror (SESAM) at wavelength 1070 nm. At a pump power of 1.3 W, the pulse width is measured to be about 17ns with repetition rate of lOkHz and with the average output power of 260roW. To our knowledge, this is the first demonstration of Nd:KLuW used for passively Q-switched laser with an SESAM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号