首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
In this paper, the effect of a novel rotating distributor for fluidized beds on the bubble size is studied. The distributor is a perforated plate that rotates around the vertical axis of the column.The formation of the bubbles on the rotating distributor is theoretically analyzed. The pierced length of the bubbles ascending in the bed were measured using optical probes. The probability distribution of bubble diameter was inferred from these experimental measurements using the maximum entropy method. The radial profile of the bubble diameter is presented for the static and rotating configurations at different gas velocities. The frequency of bubble passage and the distribution of bubbles in the cross section of the bed are also reported. Results were finally shown for different heights above the distributor.A radial decrease in the bubble size when the distributor rotates is found. The bubble growth with the bed height is also lower in the rotating case.  相似文献   

2.
Pressure fluctuation data measured in a series of fluidized beds with diameters of 0.05, 0.1, 0.29, 0.60 and 1.56 m showed that the maximum amplitude or standard deviation increased with increasing the superficial gas velocity and static bed height for relatively shallow beds and became insensitive to the increase in static bed height in relatively deep beds. The amplitude appeared to be less dependent on the measurement location in the dense bed. Predictions based on bubble passage, bubble eruption at the upper bed surface and bed oscillation all failed to explain all observed trends and underestimated the amplitude of pressure fluctuations, suggesting that the global pressure fluctuations in gas-solids bubbling fluidized beds are the superposition of local pressure variations, bed oscillations and pressure waves generated from the bubble formation in the distributor region, bubble coalescence during their rise and bubble eruption at the upper bed surface.  相似文献   

3.
A numerical simulation was conducted to study the effect of pressure on bubble dynamics in a gas–solid fluidized bed. The gas flow was modeled using the continuum theory and the solid phase, by the discrete element method (DEM). To validate the simulation results, calculated local pressure fluctuations were compared with corresponding experimental data of 1-mm polyethylene particles. It was shown that the model successfully predicts the hydrodynamic features of the fluidized bed as observed in the experiments. Influence of pressure on bubble rise characteristics such as bubble rise path, bubble stability, average bubbles diameter and bubble velocity through the bed was investigated. The simulation results are in conformity with current hydrodynamic theories and concepts for fluidized beds at high pressures. The results show further that elevated pressure reduces bubble growth, velocity and stability and enhances bubble gyration through the bed, leading to change in bed flow structure.  相似文献   

4.
Pressurized fluidized beds have been developed in quite a few industrial applications because of intensified heat and mass transfer and chemical reaction. The bubble behaviors under elevated pressure, strongly influencing the fluidization and reaction conversion of the whole system, are of great research significance. In this work, the bubble behaviors of Geldart B particle in a pseudo two-dimensional (2D) pressurized fluidized bed were experimentally studied based on digital image analysis technique. The effects of pressure and fluidization gas velocity on the general bubble behaviors (i.e., size, shape and spatial distribution) and the dynamic characteristics, such as the time-evolution of voidage distribution and local flow regimes, were comprehensively investigated. Results show that increasing pressure reduces the stability of bubbles and facilitates gas passing through the emulsion phase, resulting in the “smoother” fluidization state with smaller bubbles and declined bubble fraction and standard deviation. The equivalent bubble diameter and bubble aspect ratio increase with the increasing gas velocity while decrease as pressure rises. The elevated pressure reduces bubbles extension in the vertical direction, prohibits the “short pass” of fluidization gas in large oblong bubbles/slugs and benefits the gas–solid interaction. The flow regimes variation with gas velocity is affected by the elevated pressure, and demonstrates different features in different local positions of the bed.  相似文献   

5.
Theoretical expressions for bubble diameter in both small and large particle fluidized beds are derived by the application of two phase theory and gas flow continuity. Comparison with experimental data suggests that the numerical and analytical solution of these expressions, combined with empirical bubble frequency relations, can provide an accurate prediction of bubble size and its parametric trends.Several commonly employed empirical correlations of bubble diameter are shown to be derivable from a common theory, with differences among the correlations ascribed to variations in flow regime and bubble frequency.  相似文献   

6.
1. Introduction The design of gas distributor has a major influence on gas flow patterns, dumping and dead zones. It has been demonstrated that maldistribution will occur if the distribu-tor has a low pressure drop, that is, some parts of the bed will receive much less gas than others, and may be tem-porarily or permanently defluidized, while the gas forms semi-permanent spouts or channels in other parts. There-fore, maldistribution is undesirable in industry. For example, the temperature in a…  相似文献   

7.
Fluidized beds with multiple jets have widespread industrial applications. The objective of this paper is to investigate the jet interactions and hydrodynamics of a fluidized bed with multiple jets. Discrete element modeling coupled with in-house CFD code GenlDLEST has been used to simulate a bed with nine jets. The results are compared with published experiments. Mono dispersed particles of size 550 ~m are used with 1.4 times the minimum fluidization velocity of the particles. Both two and three dimensional computations have been performed. To the best of our knowledge, the results presented in this paper are the first full 3D simulations of a fluidized bed performed with multiple jets. Discrepancies between the experiment and simulations are discussed in the context of the dimensionality of the simulations. The 2D solid fraction profile compares well with the experiment close to the distributor plate. At higher heights, the 2D simulation over-predicts the solid fraction profiles near the walls. The 3D simulation on the other hand is better able to capture the solid fraction profile higher up in the bed compared to that near the distributor plate. Similarly, the normalized particle velocities and the particle fluxes compare well with the experiment closer to the distributor plate for the 2D simulation and the freeboard for the 3D simulation, respectively. A lower expanded bed height is predicted in the 2D simulation compared to the 3D simulation and the experiment. The results obtained from DEM computations show that a 2D simulation can be used to capture essential jetting trends near the distributor plate regions, whereas a full scale 3D simulation is needed to capture the bubbles near the freeboard regions. These serve as validations for the experiment and help us understand the complex jet interaction and solid circulation patterns in a multiple jet fluidized bed system.  相似文献   

8.
Using statistically based measuring methods for the determination of local bubble size distributions and local average bubble shapes in gas fluidized beds, bubble characteristics have been measured in a fluidized bed column of 1 m diameter where quartz sand (minimum fluidizing velocity 0.0135 m/sec) was fluidized with air at velocities ranging from 0.05 to 0.30 m/sec. The results present experimental evidence that bubbles within large diameter fluidized beds do not rise completely randomly distributed in space but rather in the form of bubble chains which is in agreement with industrial operating experience in large scale fluid bed systems. Since the formation of bubble chains considerably reduces the residence time of the bubble gas this finding is of significance for the performance of fluidized bed reactors. The influence of the operating parameters on the extent of the bubble chain formation has been investigated and possible consequences of these results are discussed.  相似文献   

9.
To study axial/radial profiles of particle velocity in the affected region of an integrated riser outlet,a cold model was developed for the integrated riser reactor combining the gas-solid distributor with the fluidized bed.Constraints,related to the gas-solid distributor and the upper fluidized bed,imposed on the particle flow in the riser outlet region,were investigated experimentally.The experimental results showed that with increasing superficial gas velocity,these constraints have strong influences on particle flow behavior,the particle circulation flux in the riser,and the height of the static bed material of the upper fluidized bed.When the constraints have greater prominence,the axial profile of the cross-sectionally averaged particle velocity in the outlet region initially increases and then decreases,the rate of decrease being proportional to the constraint strength.Along the radial direction of the outlet section,the region where the local particle velocity profile tends to decrease appears near the dimensionless radius r/R = 0.30 initially and then,with increasing constraint strength,gradually extends to the whole section from the inner wall.Based on the experimental data,an empirical model describing the constraint strength was established.The average relative error of the model is within 7.69%.  相似文献   

10.
To study axial/radial profiles of particle velocity in the affected region of an integrated riser outlet, a cold model was developed for the integrated riser reactor combining the gas–solid distributor with the fluidized bed. Constraints, related to the gas–solid distributor and the upper fluidized bed, imposed on the particle flow in the riser outlet region, were investigated experimentally. The experimental results showed that with increasing superficial gas velocity, these constraints have strong influences on particle flow behavior, the particle circulation flux in the riser, and the height of the static bed material of the upper fluidized bed. When the constraints have greater prominence, the axial profile of the cross-sectionally averaged particle velocity in the outlet region initially increases and then decreases, the rate of decrease being proportional to the constraint strength. Along the radial direction of the outlet section, the region where the local particle velocity profile tends to decrease appears near the dimensionless radius r/R = 0.30 initially and then, with increasing constraint strength, gradually extends to the whole section from the inner wall. Based on the experimental data, an empirical model describing the constraint strength was established. The average relative error of the model is within 7.69%.  相似文献   

11.
The effect of bed thickness in rectangular fluidized beds is investigated through the CFD–DEM simulations of small-scale systems. Numerical results are compared for bubbling fluidized beds of various bed thicknesses with respect to particle packing, bed expansion, bubble behavior, solids velocities, and particle kinetic energy. Good two-dimensional (2D) flow behavior is observed in the bed having a thickness of up to 20 particle diameters. However, a strong three-dimensional (3D) flow behavior is observed in beds with a thickness of 40 particle diameters, indicating the transition from 2D flow to 3D flow within the range of 20–40 particle diameters. Comparison of velocity profiles near the walls and at the center of the bed shows significant impact of the front and back walls on the flow hydrodynamics of pseudo-2D fluidized beds. Hence, for quantitative comparison with experiments in pseudo-2D columns, the effect of walls has to be accounted for in numerical simulations.  相似文献   

12.
Fluidized beds with multiple jets have widespread industrial applications. The objective of this paper is to investigate the jet interactions and hydrodynamics of a fluidized bed with multiple jets. Discrete element modeling coupled with in-house CFD code GenIDLEST has been used to simulate a bed with nine jets. The results are compared with published experiments. Mono dispersed particles of size 550 μm are used with 1.4 times the minimum fluidization velocity of the particles. Both two and three dimensional computations have been performed. To the best of our knowledge, the results presented in this paper are the first full 3D simulations of a fluidized bed performed with multiple jets. Discrepancies between the experiment and simulations are discussed in the context of the dimensionality of the simulations. The 2D solid fraction profile compares well with the experiment close to the distributor plate. At higher heights, the 2D simulation over-predicts the solid fraction profiles near the walls. The 3D simulation on the other hand is better able to capture the solid fraction profile higher up in the bed compared to that near the distributor plate. Similarly, the normalized particle velocities and the particle fluxes compare well with the experiment closer to the distributor plate for the 2D simulation and the freeboard for the 3D simulation, respectively. A lower expanded bed height is predicted in the 2D simulation compared to the 3D simulation and the experiment. The results obtained from DEM computations show that a 2D simulation can be used to capture essential jetting trends near the distributor plate regions, whereas a full scale 3D simulation is needed to capture the bubbles near the freeboard regions. These serve as validations for the experiment and help us understand the complex jet interaction and solid circulation patterns in a multiple jet fluidized bed system.  相似文献   

13.
Heat transfer characteristics in three-phase fluidized beds of floating bubble breakers have been studied in a 0.142 m I.D. x 2.0 m high Plexiglas column fitted with an axially mounted cylindrical heater.Effects of the liquid and gas velocities, the particle size, the volume ratio of floating bubble breaker to particles on phase holdup, the vertical bubble length, and the heat transfer coefficient have been determined.In the bubble-coalescing regime, the heat transfer coefficient in three-phase fluidized beds having the volume ratio Vf/Vs of 10–15% produced a maximum increase in heat transfer coefficient of about 20% in comparison to that in the bed without floating bubble breakers. Also, bubble length and gas-phase holdups exhibited their maximum and minimum values at a volume ratio of 10–15%. The heat transfer coefficient in three-phase fluidized beds of floating bubble breakers can be estimated from the surface renewal model with isotropic turbulence theory.Heat transfer coefficients expressed in terms of the Nusselt number have been correlated with the particle Reynolds number and the volume ratio of floating bubble breakers to particles.  相似文献   

14.
The present study seeks to investigate horizontal bubbly-to-plug and bubbly-to-slug transition flows. The two-phase flow structures and transition mechanisms in these transition flows are studied based on experimental database established using the local four-sensor conductivity probe in a 3.81 cm inner diameter pipe. While slug flow needs to be distinguished from plug flow due to the presence of large number of small bubbles (and thus, large interfacial area concentration), both differences and similarities are observed in the evolution of interfacial structures in bubbly-to-plug and bubbly-to-slug transitions. The bubbly-to-plug transition is studied by decreasing the liquid flow rate at a fixed gas flow rate. It is found that as the liquid flow rate is lowered, bubbles pack near the top wall of the pipe due to the diminished role of turbulent mixing. As the flow rate is lowered further, bubbles begin to coalesce and form the large bubbles characteristic of plug flow. Bubble size increases while bubble velocity decreases as liquid flow rate decreases, and the profile of the bubble velocity changes its shape due to the changing interfacial structure. The bubbly-to-slug transition is investigated by increasing the gas flow rate at a fixed liquid flow rate. In this transition, gas phase becomes more uniformly distributed throughout the cross-section due to the formation of large bubbles and the increasing bubble-induced turbulence. The size of small bubbles decreases while bubble velocity increases as gas flow rate increases. The distributions of bubble size and bubble velocity become more symmetric in this transition. While differences are observed in these two transitions, similarities are also noticed. As bubbly-to-plug or bubbly-to-slug transition occurs, the formation of large elongated bubbles is observed not in the uppermost region of bubble layer, but in a lower region. At the beginning of transitions, relative differences in phase velocities near the top of the pipe cross-section to those near the pipe center become larger for both gas and liquid phases, because more densely packed bubbles introduce more resistance to both phases.  相似文献   

15.
An experimental investigation has been carried out on velocities and amplitudes of pressure disturbances in fluidized beds made of 100–200 μm glass ballotini. Disturbances were originated by gas jetting in a 0.35 m i.d. fluidized bed. A fluidization tube 0.10 m i.d. has also been used. Different types of disturbances have been induced in the bed contained in this tube: injection of a freely rising bubble and of a captive bubble; injection of a bubble chain; and compression of the bed free surface. The dynamic wave character of the disturbances has been shown. Velocities and amplitudes of waves moving through the beds have been measured. In particular, wave velocities have been compared with theoretical results obtained by the application of “pseudo-homogeneous” and “separated phase flow” models.  相似文献   

16.
鼓泡流化床因其较高的传热特性以及较好的相间接触已经被广泛应用于工业生产中,而对鼓泡流态化气固流动特性的充分认知是鼓泡流化床设计的关键.在鼓泡流化床中,气泡相和乳化相的同时存在使得床中呈现非均匀流动结构,而这种非均匀结构给鼓泡流化床的数值模拟造成了很大的误差.基于此,以气泡作为介尺度结构,建立了多尺度曳力消耗能量最小的稳定性条件,构建了适用于鼓泡流化床的多尺度气固相间曳力模型.结合双流体模型,对A类和B类颗粒的鼓泡流化床中气固流动特性进行了模拟研究,分析了气泡速度、气泡直径等参数的变化规律.研究表明,与传统的曳力模型相比,考虑气泡影响的多尺度气固相间曳力模型给出的曳力系数与颗粒浓度的关系是一条分布带,建立了控制体内曳力系数与局部结构参数之间的关系.通过模拟得到的颗粒浓度和速度与实验的比较可以发现,考虑气泡影响的多尺度曳力模型可以更好地再现实验结果.通过A类和B类颗粒的鼓泡床模拟研究发现,A类颗粒的鼓泡床模拟受多尺度曳力模型的影响更为显著.   相似文献   

17.
Slugging represents one of the major regimes in fluidization, which occurs in small diameter beds with large bed height-to-diameter ratio or in large diameter beds with internals that resemble multiple small diameter fluidized beds. Slug types include round-nosed slug, wall slug and square-nosed slug. Studies of the slugs have been mainly focused on round-nosed or wall slugs known as half slug, typically occurring in Geldart group A particle fluidization. The square-nosed slug typically occurring for Geldart group D particles appears to be regarded as simple in its structure. The Electrical Capacitance Volume Tomography (ECVT) imaging of the square-nosed slugging phenomena conducted in this study reveals otherwise. That is the structure of the square-nosed slug is, in fact, complex, particularly with respect to its dynamic variation in fluidization. More broadly, this study examines experimentally the hydrodynamic characteristics of the square-nosed fluidization regime. Specifically, simultaneous measurements from multiple ECVT sensors provide non-invasive, continuous, 3-dimensional imaging of the entire flow region of the slugging bed and hence enabling the dynamic characterization of the evolution of the slugs. The analysis of the 3D images reconstructed for real-time gas–solid volume fraction profile of the slugging fluidized bed indicates that there are three different zones, namely, the bottom fluidization zone, the gas slug zone, and the solid slug zone, co-existing in the bed. The three zones present different hydrodynamic characteristics during the slug evolution. It is found that varying the gas velocity of the slugging bed mainly varies the maximum length of the gas slug zone, while it only has a minor effect on the lengths of the bottom fluidization zone and solid slug zone. It also has an insignificant effect on the solid volume fraction of the three zones.  相似文献   

18.
《中国颗粒学报》2005,3(1-2):26
The unique characteristics of gas-solids two-phase flow and fluidization in terms of the flow structures and the apparent behavior of particles and fluid-particle interactions are closely linked to physical properties of the particles, operating conditions and bed configurations. Fluidized beds behave quite differently when solid properties, gas velocities or vessel geometries are varied. An understanding of hydrodynamic changes and how they, in turn, influence the transfer and reaction characteristics of chemical and thermal operations by variations in gas-solid contact, residence time, solid circulation and mixing and gas distribution is very important for the proper design and scale-up of fluidized bed reactors. In this paper, rather than attempting a comprehensive survey, we concentrate on examining some important positive and negative impacts of particle sizes, bubbles, clusters and column walls on the physical and chemical aspects of chemical reactor performance from the engineering application point of view with the aim of forming an adequate concept for guiding the design of multiphase fluidized bed chemical reactors.One unique phenomenon associated with particle size is that fluidized bed behavior does not always vary monotonically with changing the average particle size. Different behaviors of particles with difference sizes can be well understood by analyzing the relationship between particle size and various forces. For both fine and coarse particles, too narrow a distribution is generally not favorable for smooth fluidization. A too wide size distribution, on the other hand, may lead to particle segregation and high particle elutriation. Good fluidization performance can be established with a proper size distribution in which inter-particle cohesive forces are reduced by the lubricating effect of fine particles on coarse particles for Type A, B and D particles or by the spacing effect of coarse particles or aggregates for Type C powders.Much emphasis has been paid to the negative impacts of bubbles, such as gas bypassing through bubbles, poor bubble-to-dense phase heat & mass transfer, bubble-induced large pressure fluctuations, process instabilities, catalyst attrition and equipment erosion, and high entrainment of particles induced by erupting bubbles at the bed surface. However, it should be noted that bubble motion and gas circulation through bubbles, together with the motion of particles in bubble wakes and clouds, contribute to good gas and solids mixing. The formation of clusters can be attributed to the movement of trailing particles into the low-pressure wake region of leading particles or clusters. On one hand, the existence of down-flowing clusters induces strong solid back-mixing and non-uniform radial distributions of particle velocities and holdups, which is undesirable for chemical reactions. On the other hand, the formation of clusters creates high solids holdups in the riser by inducing internal solids circulations, which are usually beneficial for increasing concentrations of solid catalysts or solid reactants.Wall effects have widely been blamed for complicating the scale-up and design of fluidized-bed reactors. The decrease in wall friction with increasing the column diameter can significantly change the flow patterns and other important characteristics even under identical operating conditions with the same gas and particles. However, internals, which can be considered as a special wall, have been used to improve the fluidized bed reactor performance.Generally, desirable and undesirable dual characteristics of interaction between particles and fluid are one of the important natures of multiphase flow. It is shown that there exists a critical balance between those positive and negative impacts. Good fluidization quality can always be achieved with a proper choice of right combinations of particle size and size distribution, bubble size and wall design to alleviate the negative impacts.  相似文献   

19.
A heated horizontal heat transfer tube was installed 14.8 cm above the distributor plate in a square fluid bed measuring 30.5 × 30.5 cm. Four different Geldart B sized particle beds were used (sand of two different distributions, an abrasive and glass beads) and the bed was fluidized with cold air. The tube was instrumented with surface thermocouples around half of the tube circumference and with differential pressure ports that can be used to infer bubble presence. Numerical execution of the transient conduction equation for the tube allowed the local time-varying heat transfer coefficient to be extracted. Data confirm the presence of the stagnant zone on top of the tube associated with low superficial velocities. Auto-correlation of thermocouple data revealed bubble frequencies and the cross-correlation of thermal and pressure events confirmed the relationship between the bubbles and the heat transfer events. In keeping with the notion of a “Packet renewal” heat transfer model, the average heat transfer coefficient was found to vary in sympathy with the root-mean square amplitude of the transient heat transfer coefficient.  相似文献   

20.
The flow characteristics in a spouted-fluid bed differ from those in spouted or fluidized beds because of the injection of the spouting gas and the introduction of a fluidizing gas. The flow behavior of gas-solid phases was predicted using the Eulerian-Eulerian two-fluid model (TFM) approach with kinetic theory for granular flow to obtain the flow patterns in spouted-fluid beds. The gas flux and gas incident angle have a significant influence on the porosity and particle concentration in gas-solid spouted-fluid beds. The fluidizing gas flux affects the flow behavior of particles in the fountain. In the spouted-fluid bed, the solids volume fraction is low in the spout and high in the annulus. However, the solids volume fraction is reduced near the wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号