共查询到15条相似文献,搜索用时 62 毫秒
1.
正在研制的Z箍缩实验装置(Z-pinch Primary Test Stand,PTS装置),由24个基于Marx发生器和水线的性能、结构相同的模块组成,各模块产生的大电流脉冲在绝缘堆上汇集后经磁绝缘传输线汇流到负载区,要求在不到0.2 Ω的低阻抗负载上得到8 MA以上电流,电流上升时间小于90 ns。研制的样机模块由Marx发生器、中间储能器、激光触发开关、脉冲形成线、水介质自击穿脉冲形成开关、三板型脉冲传输线组成,样机模块输出电流450 kA、输出电压2.2 MV、输出脉冲功率0.95 TW,从触发激光器信号输出到负载电压上升的系统延迟时间抖动小于6 ns。 相似文献
2.
介绍了Z箍缩初级实验平台激光触发系统的设计和单路样机验证实验结果.采用12台激光器、24个激光触发主开关来实现24路电流脉冲的精确同步,由Nd:YAG四倍频脉冲激光来触发开关,采用水平分光将一台激光器的激光脉冲等分为两束激光,激光聚焦后分别触发相邻的两路主开关.单路样机验证实验获得的激光脉冲的抖动极差小于等于3 ns.主开关的抖动极差小于等于5 ns,3台激光器之间的抖动极差小于等于3 ns.实验结果表明:在主Marx充电电压小于等于75 kV时,光路管道双隔离气室具有良好的绝缘性和密封性;激光光路系统稳定可靠;能量为100 mJ、脉冲宽度为7 ns的266 nm激光经过分光后,能够满足Z箍缩初级实验平台的设计要求. 相似文献
3.
介绍了Z箍缩初级实验平台激光触发系统的设计和单路样机验证实验结果.采用12台激光器、24个激光触发主开关来实现24路电流脉冲的精确同步,由Nd:YAG四倍频脉冲激光来触发开关,采用水平分光将一台激光器的激光脉冲等分为两束激光,激光聚焦后分别触发相邻的两路主开关.单路样机验证实验获得的激光脉冲的抖动极差小于等于3 ns.主开关的抖动极差小于等于5 ns,3台激光器之间的抖动极差小于等于3 ns.实验结果表明:在主Marx充电电压小于等于75 kV时,光路管道双隔离气室具有良好的绝缘性和密封性;激光光路系统稳定可靠;能量为100 mJ、脉冲宽度为7 ns的266 nm激光经过分光后,能够满足Z箍缩初级实验平台的设计要求. 相似文献
4.
中物院的初级实验平台(PTS)低抖动Marx发生器由60个标称电压为100 kV、电容量为1 mF电容器和30个低抖动环轨式场畸变开关构成,采用以S型线路为基础的超前触发型电路。近千次实验结果表明:在工作欠压比71%、触发电压200 kV的条件下,Marx发生器的建立时间175 ns,抖动极差小于±10.0 ns,均方根抖动小于7.0 ns。Marx发生器的串联电感13.5 mH,串联电阻3.2 W,在电容器充电80 kV时,实验测得输出电压4.3 MV, Marx发生器电压建立时间175 ns,与电路模拟结果(输出电压为4.6 MV,电压建立时间160 ns)吻合良好。 相似文献
5.
中物院的初级实验平台(PTS)低抖动Marx发生器由60个标称电压为100 kV、电容量为1 mF电容器和30个低抖动环轨式场畸变开关构成,采用以S型线路为基础的超前触发型电路。近千次实验结果表明:在工作欠压比71%、触发电压200 kV的条件下,Marx发生器的建立时间175 ns,抖动极差小于±10.0 ns,均方根抖动小于7.0 ns。Marx发生器的串联电感13.5 mH,串联电阻3.2 W,在电容器充电80 kV时,实验测得输出电压4.3 MV, Marx发生器电压建立时间175 ns,与电路模拟结果(输出电压为4.6 MV,电压建立时间160 ns)吻合良好。 相似文献
6.
介绍了用于Z箍缩驱动器的快脉冲直线型变压器驱动源(LTD)原型模块设计和初步实验结果。该模块采用32个子块并联,每个子块由两台100 kV/100 nF脉冲电容器和一只200 kV多间隙气体开关串联组成。32只开关由4路高压脉冲分别触发。模块直径为2.9 m,厚度约27 cm。电路模拟结果表明,在90 kV充电电压下,输出电流幅值为1.0 MA,电流上升时间(10%~90%)约118.6 ns。初步实验结果表明,在约90 m近似匹配电阻负载上获得的电流为995 kA,上升时间(10%~90%)为120.8 ns,脉冲宽度约335.2 ns。实验结果与电路模拟结果较为接近。 相似文献
7.
介绍了用于Z箍缩驱动器的快脉冲直线型变压器驱动源(LTD)原型模块设计和初步实验结果。该模块采用32个子块并联,每个子块由两台100kV/100nF脉冲电容器和一只200kV多间隙气体开关串联组成。32只开关由4路高压脉冲分别触发。模块直径为2.9m,厚度约27cm。电路模拟结果表明,在±90kV充电电压下,输出电流幅值为1.0MA,电流上升时间(10%~90%)约118.6ns。初步实验结果表明,在约90mΩ近似匹配电阻负载上获得的电流为995kA,上升时间(10%~90%)为120.8ns,脉冲宽度约335.2ns。实验结果与电路模拟结果较为接近。 相似文献
8.
9.
开展了基于等离子体断路开关的脉冲功率源驱动多丝Z箍缩负载初步实验,实验中采用了2根或4根钨丝组成的环形阵列,其中钨丝的直径分别为7 mm和20 mm。利用高速扫描摄影获取钨丝电爆炸和箍缩过程中等离子体自发光的物理图像。实验结果表明:导通电流为105 kA的等离子体断路开关将67%~78%的电流转换至金属丝阵负载上,负载电流上升沿为84~110 ns。高速扫描相机观察到了钨丝电爆炸形成晕等离子体及其向轴线箍缩和后期向外膨胀的物理过程。 相似文献
10.
11.
为了对即将建成的PTS装置的实验能力进行分析,对装置的工作模式及波形调节能力进行了分析。装置具有三种工作模式:短脉冲模式、长脉冲模式和波形调节模式。在不同的工作模式下,装置可以进行不同负载的实验研究。在基本工作模式下,在15 nH负载上输出前沿90 ns、幅值8~10 MA脉冲电流。通过电路模拟,对装置在三种工作模式下预计的负载电流输出进行了分析,短脉冲模式下装置负载电流的上升时间约90 ns,长脉冲模式时约200 ns,波形调节模式时可以达到400 ns。模拟结果表明,通过调节激光触发气体开关的触发方式和脉冲输出开关及装置其他参数,PTS装置可以输出脉冲前沿100~400 ns、波形形状在一定范围可调的强电流脉冲。 相似文献
12.
介绍了所研制的脉冲功率装置的组成、脉冲形成单元的设计以及脉冲形成单元实验研究结果。研究了包含脉冲形成线的绝缘设计校验、装置的脉冲形成单元的抖动及其与主同步开关击穿延迟时间的抖动和脉冲输出开关的抖动的关系。实验结果表明:在3.6 MV脉冲电压作用下,脉冲形成线的前后尼龙隔板未出现表面闪络等绝缘问题,脉冲形成线的绝缘满足设计要求。主同步开关的抖动1.6 ns,脉冲输出开关的抖动小于3.1 ns,脉冲形成单元的整体抖动小于3.0 ns,满足装置同步性能要求。 相似文献
13.
采用PSPICE软件,以PW级Z箍缩驱动源指数传输线为例,模拟分析了用有限多段分段阶跃变阻抗传输线序列模拟连续指数变阻抗传输线时,直角波、半周期正弦、全周期正弦平方等入射脉冲的电压和功率传输效率与分段数以及脉冲参数的关系,并计算了水电阻率对功率传输效率的影响。模拟结果表明:直角波波头的电压和功率传输效率随分段数增大而迅速趋近于理想传输线变压器的值;但对于非直角波入射脉冲而言,分段数并非越多越好,而是存在一个与传输线电长度和输入脉冲波前时间相应的最佳值;随着水电阻率下降,功率传输效率加速降低。 相似文献
14.
提出并设计了一种Marx发生器线路,将电路模拟和实验验证结果与传统的Marx线路进行了比较,结果表明,所设计的线路通过保证Marx后级开关上的过电压幅值,来保证开关可靠击穿并减小开关自击穿所需时间,从而减小Marx发生器的抖动和增大工作范围。在此线路基础上,设计了一种用于直线感应加速器脉冲功率系统的Marx发生器,该发生器采用正负双极性直流充电,使用低抖动的场畸变火花隙开关作为脉冲形成开关,最大储能16.87 kJ,最高输出电压450 kV,在一定工作状态下可以达到亚纳秒级的时间抖动。 相似文献