首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three different implicit finite difference schemes for solving the two-dimensional parabolic inverse problem with temperature overspecification are considered. These schemes are developed for indentifying the control parameter which produces, at any given time, a desired temperature distribution at a given point in the spatial domain. The numerical methods discussed, are based on the second-order (5,1) Backward Time Centered Space (BTCS) implicit formula, and the second-order (5,5) Crank-Nicolson implicit finite difference formula and the fourth-order (9,9) implicit scheme. These finite difference schemes are unconditionally stable. The (9,9) implicit formula takes a huge amount of CPU time, but its fourth-order accuracy is significant. The results of a numerical experiment are presented, and the accuracy and central processor (CPU) times needed for each of the methods are discussed and compared. The implicit finite difference schemes use more central processor times than the explicit finite difference techniques, but they are stable for every diffusion number.  相似文献   

2.
A general theory of implicit difference schemes for nonlinear functional differential equations with initial boundary conditions is presented. A theorem on error estimates of approximate solutions for implicit functional difference equations of the Volterra type with an unknown function of several variables is given. This general result is employed to investigate the stability of implicit difference schemes generated by first-order partial differential functional equations and by parabolic problems. A comparison technique with nonlinear estimates of the Perron type for given functions with respect to the functional variable is used.  相似文献   

3.
High-order compact finite difference method for solving the two-dimensional fourth-order nonlinear hyperbolic equation is considered in this article. In order to design an implicit compact finite difference scheme, the fourth-order equation is written as a system of two second-order equations by introducing the second-order spatial derivative as a new variable. The second-order spatial derivatives are approximated by the compact finite difference operators to obtain a fourth-order convergence. As well as, the second-order time derivative is approximated by the central difference method. Then, existence and uniqueness of numerical solution is given. The stability and convergence of the compact finite difference scheme are proved by the energy method. Numerical results are provided to verify the accuracy and efficiency of this scheme.  相似文献   

4.
New fourth-order methods are proposed for solving both ordinary and partial differential equations. The derivation of the methods is based on the form of diagonally implicit schemes applied to stiff ordinary differential equations. The methods are absolutely and unconditionally stable. Test computations are presented.  相似文献   

5.
The necessary and sufficient condition for an autonomous, ordinary differential equation to be exactly solved by a given Evans-Sanugi, nonlinear, one-step, finite difference method based on ‘classical means’ are derived. A necessary, but not sufficient, condition yields the most general nonlinearity for the differential equation which is independent of the step size. Examples of differential equations for which either nonlinear trapezoidal or nonlinear implicit midpoint methods based on arithmetic, harmonic, contraharmonic, quadratic, geometric, Heronian, centroidal and logarithmic means are exact, are presented. These new exact difference schemes may be useful in future developments of new Denk-Bulirsch, Le-Roux or Kojouhavov-Chen schemes for nonlinear evolution equations with or without blow-up.  相似文献   

6.
耿晓月  刘小华 《计算数学》2015,37(2):199-212
本文研究一类二维非线性的广义sine-Gordon(简称SG)方程的有限差分格式.首先构造三层时间的紧致交替方向隐式差分格式,并用能量分析法证明格式具有二阶时间精度和四阶空间精度.然后应用改进的Richardson外推算法将时间精度提高到四阶.最后,数值算例证实改进后的算法在空间和时间上均达到四阶精度.  相似文献   

7.
In this work, we present an implicit compact difference scheme for solving a class of neutral delay parabolic differential equations (NDPDEs). The unique solvability and unconditional stability of the scheme are proved. The temporal accuracy of the scheme is improved by using different Richardson extrapolation techniques for linear and nonlinear problems, and fourth-order accuracy in both temporal and spatial dimensions is obtained. Finally, numerical experiments are conducted to verify the accuracy and efficiency of the algorithms.  相似文献   

8.
In this study, Newton linearized finite element methods are presented for solving semi-linear parabolic equations in two- and three-dimensions. The proposed scheme is a one-step, linearized and second-order method in temporal direction, while the usual linearized second-order schemes require at least two starting values. By using a temporal-spatial error splitting argument, the fully discrete scheme is proved to be convergent without time-step restrictions dependent on the spatial mesh size. Numerical examples are given to demonstrate the efficiency of the methods and to confirm the theoretical results.  相似文献   

9.

In this paper, we present and analyze an energy-conserving and linearly implicit scheme for solving the nonlinear wave equations. Optimal error estimates in time and superconvergent error estimates in space are established without certain time-step restrictions. The key is to estimate directly the solution bounds in the H2-norm for both the nonlinear wave equation and the corresponding fully discrete scheme, while the previous investigations rely on the temporal-spatial error splitting approach. Numerical examples are presented to confirm energy-conserving properties, unconditional convergence and optimal error estimates, respectively, of the proposed fully discrete schemes.

  相似文献   

10.
11.
We propose a high order locally one-dimensional scheme for solving parabolic problems. The method is fourth-order in space and second-order in time, and provides a computationally efficient implicit scheme. It is shown through a discrete Fourier analysis that the method is unconditionally stable. Numerical experiments are conducted to test its high accuracy and to compare it with other schemes.  相似文献   

12.
A scheme is proposed for solving nonlinear algebraic equations arising in the implementation of the implicit Runge-Kutta methods. In contrast to the available schemes, not only the starting values of the variables but also those of the derivatives are predicted. This makes it possible to reduce the number of evaluations of the function (the right-hand side) at each implicit stage without significantly reducing the accuracy of integration.  相似文献   

13.
In this paper, two conservative finite difference schemes for fractional Schrödinger–Boussinesq equations are formulated and investigated. The convergence of the nonlinear fully implicit scheme is established via discrete energy method, while the linear semi‐implicit scheme is analyzed by means of mathematical induction method. Our schemes are proved to preserve the total mass and energy in discrete level. The numerical results are given to confirm the theoretical analysis.  相似文献   

14.
In this paper, two conservative difference schemes for solving a coupled nonlinear Schrödinger (CNLS) system are numerically analyzed. Firstly, a nonlinear implicit two-level finite difference scheme for CNLS system is studied, then a linear three-level difference scheme for CNLS system is presented. An induction argument and the discrete energy method are used to prove the second-order convergence and unconditional stability of the linear scheme. Numerical examples show the efficiency of the new scheme.  相似文献   

15.
提出了求解三维抛物型方程的一个高精度显式差分格式.首先,推导了一个特殊节点处一阶偏导数(■u)/(■/t)的一个差分近似表达式,利用待定系数法构造了一个显式差分格式,通过选取适当的参数使格式的截断误差在空间层上达到了四阶精度和在时间层上达到了三阶精度.然后,利用Fourier分析法证明了当r1/6时,差分格式是稳定的.最后,通过数值试验比较了差分格式的解与精确解的区别,结果说明了差分格式的有效性.  相似文献   

16.
Two types of implicit fourth-order Runge-Kutta schemes are constructed for first-order ordinary differential equations, multidimensional transfer equations, and compressible gas equations. The absolute stability of the schemes is proved by applying the principle of frozen coefficients. Adaptive artificial viscosity ensuring good time convergence and oscillations damping near discontinuities is used in solving gas dynamics equations. The comparative efficiency of the schemes is illustrated by numerical results obtained for compressible gas flows.  相似文献   

17.
The method of lines is used to obtain semidiscrete equations for a bicompact scheme in operator form for the inhomogeneous linear transport equation in two and three dimensions. In each spatial direction, the scheme has a two-point stencil, on which the spatial derivatives are approximated to fourth-order accuracy due to expanding the list of unknown grid functions. This order of accuracy is preserved on an arbitrary nonuniform grid. The equations of the method of lines are integrated in time using diagonally implicit multistage Runge–Kutta methods of the third up fifth orders of accuracy. Test computations on refined meshes are presented. It is shown that the high-order accurate bicompact schemes can be efficiently parallelized on multicore and multiprocessor computers.  相似文献   

18.
A new numerical algorithm based on multigrid methods is proposed for solving equations of the parabolic type. Theoretical error estimates are obtained for the algorithm as applied to a two-dimensional initial-boundary value model problem for the heat equation. The good accuracy of the algorithm is demonstrated using model problems including ones with discontinuous coefficients. As applied to initial-boundary value problems for diffusion equations, the algorithm yields considerable savings in computational work compared to implicit schemes on fine grids or explicit schemes with a small time step on fine grids. A parallelization scheme is given for the algorithm.  相似文献   

19.
This study presents two computational schemes for the numerical approximation of solutions to eddy viscosity models as well as transient Navier–Stokes equations. The eddy viscosity model is one example of a class of Large Eddy Simulation models, which are used to simulate turbulent flow. The first approximation scheme is a first order single step method that treats the nonlinear term using a semi‐implicit discretization. The second scheme employs a two step approach that applies a Crank–Nicolson method for the nonlinear term while also retaining the semi‐implicit treatment used in the first scheme. A finite element approximation is used in the spatial discretization of the partial differential equations. The convergence analysis for both schemes is discussed in detail, and numerical results are given for two test problems one of which is the two dimensional flow around a cylinder. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

20.
This paper concentrates on iterative methods for obtaining the multiple roots of nonlinear equations. Using the computer algebra system Mathematica, we construct an iterative scheme and discuss the conditions to obtain fourth-order methods from it. All the presented fourth-order methods require one-function and two-derivative evaluation per iteration, and are optimal higher-order iterative methods for obtaining multiple roots. We present some special methods from the iterative scheme, including some known already. Numerical examples are also given to show their performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号