首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Using Leaver's continue fraction and time domain method, we investigate the wave dynamics of phantom scalar perturbation in the background of Schwarzschild black hole. We find that the presence of the negative kinetic energy terms modifies the standard results in quasinormal spectrums and late-time behaviors of the scalar perturbations. The phantom scalar perturbation in the late-time evolution will grow with an exponential rate.  相似文献   

2.
田贵花  王世坤  赵峥 《中国物理》2006,15(7):1430-1434
The stability of the Schwarzschild black hole is restudied in the Painlevé coordinates. Using the Painlevé time coordinate to define the initial time, we reconsider the odd perturbation and find that the Schwarzschild black hole in the Painlevé coordinates is unstable. The Painlevé metric in this paper corresponds to the white-hole-connected region of the Schwarzschild black hole (r>2m) and the odd perturbation may be regarded as the angular perturbation. Therefore, the white-hole-connected region of the Schwarzschild black hole is unstable with respect to the rotating perturbation.  相似文献   

3.
田贵花  王世坤  钟树泉 《中国物理》2007,16(10):2889-2893
The stability problem of the Rindler spacetime is carefully studies by using the scalar wave perturbation. Using two different coordinate systems, the scalar wave equation is investigated. The results are different in the two cases. They are analysed and compared with each other in detail. The following conclusions are obtained: (a) the Rindler spacetime as a whole is not stable; (b) the Rindler spacetime can exist stably only as part of the Minkowski spacetime, and the Minkowski spacetime can be a real entity independently; (c) there are some defects for the scalar wave equation written by the Rindler coordinates, and it is unsuitable for the investigation of the stability properties of the Rindler spacetime. All these results may shed some light on the stability properties of the Schwarzschild black hole. It is natural and reasonable for one to infer that: (a) perhaps the Regge--Wheeler equation is not sufficient to determine the stable properties; (b) the Schwarzschild black hole as a whole might be really unstable; (c) the Kruskal spacetime is stable and can exist as a real physical entity; whereas the Schwarzschild black hole can occur only as part of the Kruskal spacetime.  相似文献   

4.
田贵花 《中国物理 B》2012,21(4):40301-040301
In this paper, we combine the perturbation method in supersymmetric quantum mechanics with the WKB method to restudy an angular equation coming from the wave equations for a Schwarzschild black hole with a straight string passing through it. This angular equation serves as a naive model for our investigation of the combination of supersym- metric quantum mechanics and the WKB method, and will provide valuable insight for our further study of the WKB approximation in real problems, like the one in spheroidal equations, etc.  相似文献   

5.
We study the stability of general relativistic static thick disks. As an application we consider the thick disk generated by applying the “displace, cut, fill and reflect” method, usually known as the image method, to the Schwarzschild metric in isotropic coordinates. The isotropic Schwarzschild thick disk obtained from this method is the simplest model to describe, in the context of General Relativity, real thick galaxies. Stability under a general first order perturbation of the disk energy momentum tensor is investigated. The first order perturbation, when applied to the conservation equations, leads to a set of differential equations that have fewer equations than unknowns. In this article we search for perturbations in which the perturbation of the four velocity in a certain direction leads to a pressure perturbation in the same direction. We found that, in general, the isotropic Schwarzschild thick disk is stable under these kinds of perturbations.  相似文献   

6.
The special and general relativity theories are used to demonstrate that the velocity of an unradiative particle in a Schwarzschild metric background, and in an electrostatic field, is the group velocity of a wave that we call a particle wave, which is a monochromatic solution of a standard equation of wave motion and possesses the following properties. It generalizes the de Broglie wave. The rays of a particle wave are the possible particle trajectories, and the motion equation of a particle can be obtained from the ray equation. The standing particle wave equation generalizes the Schrödinger equation of wave amplitudes. The particle wave motion equation generalizes the Klein–Gordon equation; this result enables us to analyze the essence of the particle wave frequency. The equation of the eikonal of a particle wave generalizes the Hamilton–Jacobi equation; this result enables us to deduce the general expression for the linear momentum. The Heisenberg uncertainty relation expresses the diffraction of the particle wave, and the uncertainty relation connecting the particle instant of presence and energy results from the fact that the group velocity of the particle wave is the particle velocity. A single classical particle may be considered as constituted of geometrical particle wave; reciprocally, a geometrical particle wave may be considered as constituted of classical particles. The expression for a particle wave and the motion equation of the particle wave remain valid when the particle mass is zero. In that case, the particle is a photon, the particle wave is a component a classical electromagnetic wave that is embedded in a Schwarzschild metric background, and the motion equation of the wave particle is the motion equation of an electromagnetic wave in a Schwarzschild metric background. It follows that a particle wave possesses the same physical reality as a classical electromagnetic wave. This last result and the fact that the particle velocity is the group velocity of its wave are in accordance with the opinions of de Broglie and of Schrödinger. We extend these results to the particle subjected to any static field of forces in any gravitational metric background. Therefore we have achieved a synthesis of undulatory mechanics, classical electromagnetism, and gravitation for the case where the field of forces and the gravitational metric background are static, and this synthesis is based only on special and general relativity.  相似文献   

7.
Generally, the Schwarzschild black hole is proven to be stable by two different methods: the mode-decomposition method and the integral method. We show that the integral method can only apply to the initial data vanishing at both the horizon and the spatial infinity. It can not treat the initial data only vanishing at the spatial infinity. We give an example to show the misleading information caused by the use of tortoise coordinates in the perturbation equations. Subsequently, the perturbation equations in the Schwarzschild coordinates are shown to be insuftlcient for the stability study.  相似文献   

8.
The basic formalism for conformal fluctuations of the gravitational field is presented. After developing a master propagator for the interior Schwarzschild solution, the time development of the gravitational wave function is considered. The effect of the two classical singularities (resp. pseudo-singularities) of the Schwarzschild solution on the quantum wave function for the gravitational field is studied using a wave function initially localized on the classical solution. While the true singularity at r = 0 imparts consequences on the wave function that cannot be ignored, the pseudo-singularity at the event horizon does not seem to cause any divergences on the interior fluctuations of the Schwarzschild solution.  相似文献   

9.
We study Kerr-Schild type perturbations with a non-null perturbation vector in the vacuum case. The perturbation equations are derived and it is shown that they lead to constraints on the background space-time which can be interpreted in terms of the curvature of 3-spaces. The first order perturbation equations are used to construct new Petrov type D solutions tangent to the Schwarzschild metric.  相似文献   

10.
We study the excitation of axial quasi-normal modes of deformed non-rotating black holes by test particles and we compare the associated gravitational wave signal with that expected in general relativity from a Schwarzschild black hole. Deviations from standard predictions are quantified by an effective deformation parameter, which takes into account deviations from both the Schwarzschild metric and the Einstein equations. We show that, at least in the case of non-rotating black holes, it is possible to test the metric around the compact object, in the sense that the measurement of the gravitational wave spectrum can constrain possible deviations from the Schwarzschild solution.  相似文献   

11.
Gravitational perturbations of the Schwarzschild metric are treated from a point of view which is adapted, in a natural way, to the gauge group of the perturbed Einstein equations. The metric perturbations are explicitly decomposed into their gauge invariant, gauge dependent and constrained parts and a variational principle for the perturbation equations is derived. The Regge-Wheeler and Zerilli equations are rederived and shown to have a gauge invariant significance. The Hamiltonian for the perturbations is constructed and used to discuss the stability properties of the Schwarzschild black hole.  相似文献   

12.
We present a practical method for calculating the local gravitational self-force (often called "radiation-reaction force") for a pointlike particle orbiting a Schwarzschild black hole. This is an implementation of the method of mode-sum regularization, in which one first calculates the (finite) contribution to the force due to each individual multipole mode of the perturbation, and then applies a certain regularization procedure to the mode sum. Here we give the values of all the "regularization parameters" required for implementing this regularization procedure, for any geodesic orbit in Schwarzschild spacetime.  相似文献   

13.
This paper gives a generalisation of Einstein's vacuum field equations for Finsler metrics. The given generalised field equation reproduces the Einstein equations for Riemannian metrics, and also admits non-Riemannian solutions. This is shown in detail by deriving a first order Finsler perturbation, solving the new field equation, of the Schwarzschild metric. This perturbation turns out to be time independent. The effects of the perturbation on the three Classical Tests of General Relativity are derived, and used to give limits on the size of the perturbation parameter involved.  相似文献   

14.
邵建舟  王永久 《中国物理 B》2012,21(4):40404-040404
Under the conditions that the wavelength of a particle is much larger than its radius of central mass, and the Schwarzschild field is weak, the scattering of a particle has been studied by many researchers. They obtained that scalar and vector particles abide by Rutherford’s angle distribution by using the low level perturbation method and the scattered field’s approximation in a weak field. The scattering cross section of a photon coincides with the section in Newton’s field of point mass. We can obtain the photon’s polarization effect by calculating the second-order perturbation in the linear Schwarzschild field. This article discusses the scattering and absorption of a particle by a black hole involving a global monopole by using the aforesaid method.  相似文献   

15.
We investigate the electromagnetic perturbation around a stringy black hole. A second-order differential equation is obtained for the perturbation. The variation of the effective potential with r is presented. The complex frequencies of the quasinormal modes of electromagnetic perturbation around a stringy black hole are computed by the third Wentzel-Kramers-Brillouin (WKB) approximation. The results show that the parameters resulted from the compactification of higher dimensions can influence the quasinormal complex frequencies, and the Maxwell field around a stringy black hole damps more slowly than that around a Schwarzschild black hole.  相似文献   

16.
We consider the Wheeler–DeWitt equation as a device for finding eigenvalues of a Sturm–Liouville problem. In particular, we will focus our attention on the electric (magnetic) Maxwell charge. In this context, we interpret the Maxwell charge as an eigenvalue of the Wheeler–De Witt equation generated by the gravitational field fluctuations. A variational approach with Gaussian trial wave functionals is used as a method to study the existence of such an eigenvalue. We restrict the analysis to the graviton sector of the perturbation. We approximate the equation to one loop in a Schwarzschild background and a zeta function regularization is involved to handle with divergences. The regularization is closely related to the subtraction procedure appearing in the computation of Casimir energy in a curved background. A renormalization procedure is introduced to remove the infinities together with a renormalization group equation.  相似文献   

17.
The quasinormal modes(QNMs) of massless scalar field perturbation in a noncommutative-geometry-inspired Schwarzschild black hole spacetime are studied using the third-order Wentzel-Kramers-Brillouin approximative approach. The result shows that the noncommutative parameter plays an important role for the quasinormal(QNM) frequencies.  相似文献   

18.
In this paper we investigate the scattering of massless Dirac wave from several different black hole spacetimes (i.e. the Schwarzschild black hole, the RN extremal black hole, the Schwarzschild de Sitter black hole, and the extremal Schwarzschild de Sitter black hole) which are influenced by the cosmic string, respectively. All these cases show us that the total absorption cross sections oscillate around the geometric-optical limit and decrease with linear mass density μ of the cosmic string. All of the total scattering cross sections exhibit that the main scattering angle becomes narrower for the high partial frequency wave. Due to the influence of cosmic string, the glory peak becomes wider for larger values of linear mass density μ of the cosmic string.  相似文献   

19.
The existence and stability under linear perturbation of closed timelike curves in the spacetime associated to Schwarzschild black hole pierced by a spinning string are studied. Due to the superposition of the black hole, we find that the spinning string spacetime is deformed in such a way to allow the existence of closed timelike geodesics.  相似文献   

20.
An explicit fluid flow simulation of electromagnetic wave propagation in the gravitational field of a Schwarzschild black hole is given. The fluid has a constant refractive index and a spherically symmetric inward directed flow. The resulting form of the metric leads to a new coordinate system in which the Schwarzschild vacuum is written in Gordon's form. It is shown that a closely related coordinate system interpolates between the Kerr-Schild and Painlevé-Gullstrand coordinates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号