首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spin-lattice relaxation times are determined for the methylene carbon of polyisobutylene (PIB), as well as for the ortho carbon of toluene in toluene-polyisobutylene solutions. The Hall-Helfand correlation function combined with restricted anisotropic rotational diffusion was used to treat the T1 data of the methylene carbon of PIB. A simple exponential correlation function was used to describe the local motion of toluene in the solutions which falls in the extreme narrowing limit for the solutions studied. Both models described satisfactorily the temperature and field dependence of the spin-lattice relation times. From the temperature dependence of the correlation times for the polymer segmental motion, the free volume of the solution at each concentration is extracted and compared with the values obtained from previous studies of the translational motion of the toluene penetrant. The free volume values extracted from the T1 data for the methylene carbon of PIB and the self-diffusion data for the toluene were found to be in substantial agreement. The interrelationship of the timescale of segmental motion of the polymer and the translational diffusion of the toluene was also examined and it was found that the two types of motion seem to be correlated in high polymer concentrated solutions. The toluene reorientational motion was found to be much faster than both the polymer segmental motion and the toluene translational diffusion leading to the conclusion that the toluene reorientational motion is uncoupled from these two motions. ©1995 John Wiley & Sons, Inc.  相似文献   

2.
Polyacrylamide having a fluorescent residue at the chain end was prepared by polymerization of acrylamide in the presence of a fluorescent dye. The segmental motion of the chain end in dilute solution was studied by the fluorescence polarization method on the fluorescent polyacrylamide conjugates thus obtained. The linear relation between 1/p and T0 held for every sample studied in aqueous media, where p is the degree of polarization of the fluorescence, T is the absolute temperature, and η0 is the viscosity of the medium. The mean relaxation time 〈ρ〉 of the conjugate was evaluated from these data as a function of the molecular weight of the conjugate. The value of 〈ρ〉 increased slightly with molecular weight, varying from 3.3 × 10?9 to 7 × 10?9 sec. The absolute values of 〈ρ〉 and its molecular weight dependence suggest that 〈ρ〉 represents the mean rotational relaxation time for the cooperative motion of about ten monomeric units at the chain end. The effect of the mean extension of polymer chain on the segmental motion was found to be negligible.  相似文献   

3.
The orientational and translational motion of individual dye molecules embedded in a polymer matrix is studied in the temperature regime above the glass transition. The rotational diffusion close to the glass transition is heterogeneous on the single molecule level and few sudden changes in the reorientational speed of single molecules are found. The exchange between these reorientational speeds is found to be one order of magnitude slower than the reorientational time constant of the molecules. Translational motion can be clearly identified at about 1.2 Tg. However, the translational diffusion shows no signs of heterogeneity on the timescale of our experiments, from which we conclude, that the timescale of the exchange process between microenvironments has become too fast or that no heterogeneity exists at the temperatures above 1.2 Tg.  相似文献   

4.
The rotational relaxation data for free nitroxyl radicals in poly(ethylene glycol) samples of mol. wt 3000-22,000 gave for the glass-transition temperature (Tp) a value of ?60°, independent of molecular weight. The rotational activation energy was ~ 2 kJ/mole below Tg and ~ 10 kJ/mole above Tg. This indicated that the mechanism of motion below Tg differs from the above Tg. Evidently the rotating units of polymer are much smaller below Tg than above it. The rotational relaxation time (T) was found to be dependent on the molar volume of PEG (V) and to follow the empirical equations t = A exp (?kV1) and t = B exp (?kV1) where Va and V1 are the molar volumes (cm3/mol) when T < Tg and T > Tg respectively, and k ~ 1. Therefore the defects in which radicals are located are perhaps the dominant factor determining the dynamic state of probe radicals in polymers at low temperatures.  相似文献   

5.
Electrophoretic deposition of polymer chains is studied by computer simulations. Effects of molecular weight (L c), field (E), and temperature (T) on the growth of the interface width, roughness, and density profiles are examined on a discrete lattice with kink-jump segmental dynamics of chains. Effect of faster segmental dynamics will be pointed out.  相似文献   

6.
We present here the application of one-dimensional and two-dimensional NMR techniques to characterize the structure of methoxyl end-functionalized polystyrenes (PS). The peaks in 1H-NMR spectra corresponding to main-chain, side-chain and chain-end groups are assigned by 1H-1H gCOSY, 1H-13C gHSQC and gHMBC spectra. For the first time, the spin-lattice relaxation time (T 1) of protons of the chain-ends is revealed to be affected more by polymer molecular weight (MW) than by the protons of the main-chains and the side-chains (almost independent from MW). As a result, a much higher delay time (d1) for chain-ends (d1 > 20T 1) is needed for quantitative NMR measurement when using end-group estimation method to obtain the MW of PS, which is in accordance with the value estimated by GPC. An improved method for the polymer MW determination is established, by combination of different NMR techniques to distinguish the peaks, and a large d1 setting to achieve quantitative NMR analysis.  相似文献   

7.
The anisotropic Raman spectra of the CH and CD stretching modes in seven deuterated benzenes of D6h, D3h, D2h and C2h symmetry are reported. The reorientational linewidths are interpreted within the model of anisotropic rotational diffusion. The data are consistent with NMR relaxation studies. The study covers the temperature range between T/Tc = 0.49 and T/Tc = 0.97.  相似文献   

8.
The use of single molecules to study local, nanoscale polymer dynamics is presented. Fluorescence lifetime fluctuations were used to extract the number of polymer segments (Ns) taking part in the rearranging volume around the probe molecule below the glass transition temperature. Ns was dependent on the temperature and it decreased with increasing temperature. Above the glass transition, rotational motion of single molecules was followed in time and typical time-scales of the rotational diffusion were extracted. These two approaches allowed us to obtain non-averaged information about the heterogeneous dynamics present in polymer systems, on the nanoscale, above and below glass transition temperatures.  相似文献   

9.
The development of flexible, room-temperature phosphorescence (RTP) materials remains challenging owing to the quenching of their unstable triplet excitons via molecular motion. Therefore, a polymer matrix with Tg higher than room temperature is required to prevent polymer segment movement. In this study, a RTP material was developed by incorporating a 4-biphenylboronic acid (BPBA) phosphor into a poly(vinylidene fluoride) (PVDF) matrix (Tg=−27.1 °C), which exhibits a remarkable UV-light-dependent oxygen consumption phosphorescence with a lifetime of 1275.7 ms. The adjustable RTP performance is influenced by the crystallinity and polymorph (α, β, and γ phases) fraction of PVDF, therefore, the low Tg of the PVDF matrix enables the polymeric segmental motion upon microwave irradiation. Consequently, a reduction in the crystallinity and an increase in the α phase fraction in PVDF film induces RTP after 2.45 GHz microwave irradiation. These findings open up new avenues for constructing crystalline and phase-dependent RTP materials while demonstrating a promising approach toward microwave detection.  相似文献   

10.
The isolated polystyrene chains spin-labeled with peroxide radical at the free end (IPSOO) in which the chain roots were covalently bonded to the surface of microcrystalline cellulose (MCC) powder were produced by mechanochemical polymerization of styrene initiated by MCC mechanoradicals. The IPSOO was used as motional probes at the ends of isolated polystyrene chains tethered on the surface of MCC powder. Two modes for the molecular motion of IPSOO were observed. One was a tumbling motion of IPSOO on the MCC surface, defined as a train state, and another was a free rotational motion of IPSOO protruding out from the MCC surface, defined as a tail state. The temperature of tumbling motion (T tum ) of IPSOO at the train state was at 90 K with anisotropic correlation times. T tum (90 K) is extremely low compared to the glass transition temperature (T g b ; 373 K) of polystyrene in the bulk. At temperatures above 219 K, the IPSOO was protruded out from the MCC surface, and freely rotated at the tail state. The train–tail transition temperature (T traintail ) was estimated to be 222 K. T tum (90 K) and T traintail (222 K) are due to the extremely low chain segmental density of IPSOO on the MCC surface under vacuum. The interaction between IPSOO and the MCC surface is a minor contributing factor in the mobility of IPSOO on the surface under vacuum. It was found that peroxy radicals are useful probes to characterize the chain mobility reflecting their environmental conditions.  相似文献   

11.
Molecular dynamics (MD) simulation of the local motion of a polystyrene (PS) chain with anthryl group at the chain end surrounded by benzene molecules was performed and the results were compared with those obtained experimentally by the fluorescence depolarization method. The molecular weight dependence of the relaxation time of the probe obtained by the MD simulation was qualitatively in agreement with the results obtained by the fluorescence depolarization method. We also estimated the molecular weight dependence of the relaxation time for the end-to-end vector. Below the degree of polymerization (DP)≤3, the mean relaxation time Tm for the end-to-end vector was similar to that for the vector corresponding to the transition moment of the probe. With the increase of DP, the Tm for the probe tended to reach an asymptotic value unlike that for the end-to-end vector, which monotonically increased with DP. This indicates that the entire motion of a polymer coil contributes to the local motion to a lesser extent as the molecular weight increases. The MD simulations using artificial restraints showed that the rotational relaxation of the probe at the chain end for a dynamically stiff PS chain is realized by the cooperative rotation of the main chain bonds. The internal modes which takes place below 5 monomer units mainly led to the rotational relaxation of the probe at the PS chain end. Finally, the change of Tm with the position along the PS main chain was examined.  相似文献   

12.
1-Ethyl-3-methylimidazolium acetate was studied by NMR relaxation. The temperature dependences of the spin-lattice relaxation rates (1/T 1) for 1H and 13C were obtained. The curves with maxima were observed for the majority of the temperature dependences 1/T 1, which provided a reliable temperature dependence of the correlation times (τc). In the low-temperature range, the proton relaxation rates tend to an asymptotic value, which is related, most likely, to spin diffusion manifested in the studied samples. The values of correlation times τc calculated for 1H and 13C of the same functional group almost coincide at high temperatures, which confirms that the used approach is adequate for the determination of characteristic times of rotational reorientation of counterions in the studied ionic liquid.  相似文献   

13.
This work presents new results concerning characterization of polymethyl(α-n-pentyl)acrylate polymer by means of thermal analysis. In differential scanning calorimetry investigations, the measured values of T g, T f and ΔC p, i.e. the glass transition temperature, the fictive temperature and the heat capacity step at T g, show that the polymer can be considered as fragile. Thermogravimetric analysis revealed two mass losses, the first, at low temperature, being associated with the evaporation of water molecules, and the second, at high temperature, corresponding degradation of the polymer. This degradation is a two-step phenomenon. Finally, study of the β and the α transitions by elementary and complex TSDC led to the following values: T β=?40°C, T α=36°C, T c=47°C, τc=2.5 s and ΔH=85 to 165 kJ mol?1.  相似文献   

14.
The equilibrium electrooptical effect in the isotropic phase of seven liquid crystalline substances (4-n-decyloxy-4′-cyanobiphenyl, carbosilane dendrimer of the fourth generation with cyanobiphenyl terminal fragments, and the fourth, fifth, sixth, seventh, and tenth members of the homologous series of 4-n-acylphenylene 4′-n-alkoxybenzoates) was studied. The smectic A phases were found to exhibit weaker divergence of the Kerr constant in the vicinity of the T c isotropic melt-liquid crystal phase transition temperature compared with the nematic phases. The difference between T c and the temperature T* of the virtual second-order phase transition varied from 3.2 to 19.0 K for the smectic A phases, which substantially exceeded the value (T c-T*) ≤ 1 K for the nematic phases. A theory of the electrooptical properties of isotropic melts in the vicinity of the T c temperature of the phase transition from the isotropic to smectic A phase is developed. An equation relating the T c-T* difference to the phenomenological coefficients of the expansion of the Helmholtz energy of an isotropic melt into a series in powers of the coordination and orientational order parameters is obtained.  相似文献   

15.
The temperature TGas of the neutral gas in a unipolar HF-discharge in air at atmospheric pressure was measured by Mach—Zehnder-interferometry. This value of the temperature is compared with results of measurements of the rotational temperature of the N2 second-positive system. Departures from local thermal equilibrium were found.  相似文献   

16.
To investigate films of metal clusters, a neutral lead cluster beam, generated by inert gas aggregation, is characterized via time-of-flight mass spectroscopy and subsequently used for growing a thin film (d=100 Å) on a cold sapphire substrate. In an annealing program the temperature dependence of the electrical resistance of the film is determined by the dc 4-probe technique. Directly after deposition a superconducting transition atT c =5.6 K is observed which is shifted to higher temperatures with increasing annealing temperature (T c =6.5 K after annealing at room temperature).  相似文献   

17.
A new network polymer electrolyte matrix with polyether in the side chains and main chains was synthesized by the azo-macroinitiator method and urethane reaction. The macroinitiator, polymer and network polymer were confirmed by Fourier-transform infrared (FT-IR) spectroscopy and 1H NMR. FT-IR was also used to study the environment of lithium ions doped in these network polymer electrolytes. Three important groups are considered: N-H, carbonyl, and ether groups. The thermal properties of the polymer electrolytes were measured by differential scanning calorimetry and thermogravimetric analysis. The Tg value of this polymer is less than that of a general comb-like polymer. Added lithium ions interact with the oxygen atoms on ether groups, causing the Tg of the polymer electrolyte to increase. Moreover, the interaction between lithium ions and ether groups decreases the decomposition temperature of the polymer. The conductivity measured by AC impedance reached a maximum of 10−4 S cm−1. A plot of conductivity vs. temperature fit the Vogel-Tamman-Fulcher equation, indicating that ionic mobility in this network polymer electrolyte is coupled to segmental chain movements.  相似文献   

18.
The effects of poling temperature on piezoelectricity and its thermal stability were investigated on the basis of the thermal molecular motion associated with the crystalline region. This was done by using a film of highly oriented poly(vinylidene fluoride) containing form-I crystals. The film was prepared by a zone-drawing apparatus of the forced-quenching type. The piezoelectric stress constant e31 is a monotonically increasing function of the poling temperature which becomes steeper above ca. 320 K and again at ca. 400 K. The degree of orientation of the crystal b axis generated by poling also increases more steeply with poling temperature above ca. 320 K and again at 400 K. These temperatures correspond, respectively, to the crystalline dispersion temperature at 11 Hz, designated as αc, and the initiation temperature Tpm of large-scale molecular motion corresponding to premelting of form-I crystals. Thus the effect of poling temperature on piezoelectricity closely reflects the moleculer motion in form-I crystals. The annealing temperature T'a at which e31 decreases to 70% of that of unannealed sample by annealing a poled sample increases with the poling temperature and again this increase is steeper above poling temperatures of ca. 320 K and ca. 400 K. Thus the decay of piezoelectricity depends on both the αc temperature and Tpm.  相似文献   

19.
Glass transition is crucial to the thermal and dynamical properties of polymers. Thus, it is important to detect glass transition temperature (T g) with a sensitive and proper method. Dynamic mechanical analysis (DMA) is one of the most frequently used methods to determine T g due to its advantage of high sensibility. However, there is controversy in the past literatures to determine the proper glass transition temperature among three transition temperatures, i.e., T g1, T g2 and T g3 in the dynamic mechanical spectra, which correspond to the temperature abscissa of intersect value of two tangent lines on storage modulus (E′), the peak of the loss modulus (E″) and the peak of the loss tangent (tan δ). In this work, these three transition temperatures were compared with the glass transition temperature determined by DSC (T gDSC). Based on the discussion of different modes of molecular motion around the glass transition region, it is demonstrated that T g1 and T g2 have the same molecular mechanism as T gDSC, i.e., local segmental motion which is enthalpic in nature and determines the proper glass transition temperature, while T g3 is assigned to the transition temperature of entropic Rouse modes, thus cannot be used as the proper glass transition temperature.  相似文献   

20.
Conductivities for a wide variety of ionically conducting polymer electrolytes with a range of salt compositions have been investigated over the temperature region Tg to 370 K. When the conductivity data are analyzed as a function of temperature using the empirical Vogel-Tammann-Fulcher (VTF) equation a common trend is observed in that deviations in the fits to the data invariably occur in the temperature range 1.2 Tg to 1.4 Tg for all of the samples investigated. This deviation is interpreted as a decoupling of the ions from polymer segmental motion. Recent 23Na NMR and 22Na positron annihilation studies of sodium salt-based polymer electrolytes support this interpretation with evidence of a change in dynamics at about 1.2Tg. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号