首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The radiation spectra of plasma in the region of 130–350 nm and the intensities of the 175-nm ArCl, 193-nm ArF, and 258-nm Cl2 bands produced in the transverse volume discharge on a mixture of Ar/CF2Cl2 = (1–15)/(0.008–0.150) kPa are investigated. The discharge is shown to be a multiwave source of UV-VUV radiation on transitions of ArCl, ArF, and Cl2 molecules. The optimum content of Freon-12 molecules is 0.008–0.010 kPa and that of argon atoms 10–15 kPa. The ratio of the intensities of the ArCl (B-X) and ArF (B-X) bands is 10, which is approximately equal to the ratio of concentrations of [Cl] and [F] ions, which are formed in the reaction of dissociative electron attachment to CF2Cl2 molecules. The service life of a radiator with λ = 175 nm of ArCl on one mixture in a gas-static mode is not greater than 5·103 pulses. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 67, No. 3, pp. 407–408, May–June, 2000.  相似文献   

2.
Results are presented from a study of UV and VUV emission from the plasma of a transverse volume discharge in chlorine and a He/Cl2 mixture. In the wavelength range Δλ=140–300 nm, the Cl2(D′-A′) band with an edge at 258 nm and the Cl 2 * band with edge at λ=195 nm are found to be dominant. It is shown that, in the pressure range [Cl2]=0.1–2.0 kPa, the intensity of emission with λ≤195 nm is higher than the intensity of the Cl2(D′-A′) band. At [Cl2]≥2 kPa, emission in the 258-nm band is dominant.  相似文献   

3.
We present the results of investigation into radiation of a pulsed transverse discharge in neon at a pressure of 10–200 kPa. Survey spectra of plasma radiation, time characteristics of radiation, and the effect of small impurities of water vapors and air on the optical characteristics of a neon plasma were studied. We show that at a pressure of residual gases at a level of 10 Pa intense OH*, NO*, and N * 2 bands are observed in radiation of the plasma of a nanosecond transverse discharge in Ne against the background of continuous plasma radiation, and in the spectral region with λ>400 nm radiation was observed on the Hβ 486.1 nm and NeI 585.3 nm lines, and (when P≥100 kPa) on the line at the 3s–3p-transitions of a Ne atom. The radiation intensity of the third continuum of neon increases with pressure and with energy contribution to plasma, with its maximum being located in the VUV spectral region (λ max <200 nm). To whom correspondence should be adressed. Uzhgorod State University, 46, Pidgirna St., Uzhgorod, Ukraine. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 66, No. 1, pp. 5–10, January–February, 1999.  相似文献   

4.
We present the results of an investigation of a short-wavelength radiation source (Δλ = 130–350 nm) with excitation by a transverse high-frequency (f = 1.76 MHz) discharge based on a mixture of argon and chlorine (p = 100–500 Pa). We have studied the spectral characteristics of the plasma, the oscilloscope traces of the voltage, the current and emission of the discharge, the dependence of the power of the emission on the electrical power of the discharge, and also the pressure and partial composition of the Ar/Cl2 mixture. The UV-VUV source emits in a system of broadened and overlapping ArCl(B/X), Cl2(D′/A′), and Cl**2 molecular bands. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 5, pp. 648–651, September–October, 2007.  相似文献   

5.
In this paper it is shown that to achieve a maximum efficiency and high output energy of an ArF (193 nm) excimer laser, one should use optimal pump intensity. It has been shown experimentally that the optimal pump intensity for an ArF excimer laser with the mixture of He:Ar:F2 has a value of 4.5–5.0 MW/cm3. The results of an experimental study of the pump and active medium parameters effect on the efficiency and output energy of the ArF excimer laser on the mixture of He:Ar:F2 are presented. To provide high pump intensity of an active medium, the excitation scheme of the LC-inverter type has been used where the current return conductor inductance had been increased from 30 to 80 nH. This allows the pump to achieve levels of intensity above 5.0 MW/cm3. By using the pump intensity of 5.0 MW/cm3 in an active medium of He:Ar:F2–79.7:20:0.3 at total pressure of 2.4 atm, we are the first to obtain the output energy of 1.3 J at the total efficiency of 2.0%. The pulse duration (FWHM) was 15±1 ns and the peak pulse power was 85 MW. PACS 42.55.Lt; 42.60.Lh  相似文献   

6.
Electrical and optical characteristics of a subnormal glow discharge in a short (L=10 cm) discharge tube with an inner diameter of 5 mm are investigated. The dependences of the discharge current-voltage characteristic, the energy deposition in the discharge, the plasma spectral characteristics in the 130-to 350-nm wavelength range, the emission intensities of the XeCl(D-X) 236-nm and XeCl(B-X) 308-nm bands, and the total emission intensity in the range 180–340 nm on the pressure and composition of the Xe/Cl2 mixture are studied. Two modes of glow discharge are shown to exist: the low-current mode at a discharge current of I ch ≤2 mA and the high-current mode at I ch >2 mA. The transition from one mode to another occurs in a stepwise manner. The increase in the chlorine content causes the discharge voltage and the energy deposition in the plasma to increase. At low pressures of the Xe/Cl2 mixture (P≤0.7 kPa), stationary strata form in the cathode region. The lower the discharge current, the greater the volume occupied by the strata. This longitudinal discharge acts as a powerful source of continuous broadband emission in the range 180–340 nm, which forms due to overlapping the XeCl(D, B-X) and Cl 2 * bands with edges at λ=236, 308, and 258 nm. The intensity of the 236-nm band is at most 20% of the total intensity of UV radiation. The maximum power of UV radiation (3 W at an efficiency of 8%) is attained at a xenon partial pressure of 250–320 Pa and a total pressure of the mixture of 2 kPa.  相似文献   

7.
Results of investigations of survey spectra of plasma emission of the working media of inert-gas-chloride electric-discharge lasers in the 200–600 nm range are reported. In the UV spectra, FeI lines, which are of interest for lasing with optical pumping of iron vapors by excimer molecules, were observed. In the visible spectrum, a number of HeI, KrI, and XeII lines are suggested for determination of electron density and investigation of the discharge instability on XeCl* and KrCl* molecules. Uzhgorod State University, 46, Pidgirna St., Uzhgorod, 294000, Ukraine. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 64, No. 4, pp. 523–527, July–August, 1997.  相似文献   

8.
By feeding with carbon clusters from the ArF excimer laser (=193 nm) ablation of graphite target, carbon nanotubes (CNTs) were grown on Fe and Ni films deposited on SiO2/Si substrates, which were set inside a quartz tube with Ar gas pressure of 500 Torr operating at 1100 °C. Optical emission spectroscopic observation of the ablation plume of graphite and Ni/Y catalyst was performed in the Ar gas for a pressure range of 0–600 Torr at room temperature and 1000 °C. The emission band intensity of C31u) at the distance of 2 mm from the target increased with increasing Ar gas pressure. PACS 79.20.Ds; 81.07.De; 39.30.+w  相似文献   

9.
Ignition conditions and the characteristics of a repetitive volume discharge with a spherical anode and plane cathode are investigated. The discharge was ignited in Ar/Cl2 mixtures (P≤2.0 kPa) used in excimer halogen lamps operating on the ArCl (B-X) 175-nm, Cl2(D′-A′) 257-nm, and Cl 2 ** 195-to 200-nm molecular bands. At an interelectrode distance of 3 cm and a dc anode voltage of U ch ≤1 kV, a stable repetitive pulsed discharge with a repetition rate of 1–50 kHz was ignited in chlorine or (0.1–2.0)/(0.04–0.12)-kPa Ar/Cl2 mixtures. The development of attachment instability in the discharge plasma, in which the processes of the formation, decay, and diffusion of the Cl 2 and Cl negative ions play an important role, leads to the formation of a solitary pearlike plasma domain with an average diameter of 0.2–3.5 cm.  相似文献   

10.
Results of an investigation of the characteristics of a transverse discharge with prebreakdown ionization multiplication of electrons in the working media of N2(C-B)-and SF6/H2 chemical HF-lasers are reported. The conditions of initiation of a stable volume discharge in the discharge gap with low homogeneity of the electrical-field distribution are investigated. A quasisteady plasma based on N2 molecules with a radiation duration of ≤0.5 μsec at transitions of the 2+-system and a homogeneous discharge in a SF6/H2=(3–7)/(1–2) kPa mixture, which is of interest for preionization of the working medium of an HF-laser by the predischarge method, are obtained. Uzhgorod State University, 46, Pidgirna Str., Uzhgorod, 294000, Ukraine. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 66, No. 3, pp. 412–415, May–June, 1999.  相似文献   

11.
We have investigated ArF (λ=193 nm) excimer laser-induced crystallization of amorphous CdSe semiconductor thin films. The crystallization has been monitored by a related photoluminescence emission in the free-exciton and defect-band transition regions. For different irradiation conditions, we have observed formation of nanorods, up to 2 μm long, as well as the formation of arrays of CdSe nanobeads with a narrow size distribution and characteristic dimensions corresponding to λ/2 and λ/8. The successful crystallization has also been confirmed by confocal Raman spectroscopy.  相似文献   

12.
Time- and spatially-resolved optical emission spectroscopy was performed to characterize the plasma produced in a hybrid magnetron-sputtering-laser deposition system, which is used for TiC or SiC thin films preparation. A graphite target was ablated by a KrF excimer laser (λ=248 nm,τ=20 ns) and either Ti or Si targets were used for DC magnetron sputtering in argon ambient. Spectra were measured in the range 250–850 nm. The evolution of the spectra with varying magnetron powers (0–100 W) and argon pressures (0.3–10 Pa) was studied. Spectra of the plasmas produced by a) the magnetron alone, b) the ablation laser alone, and c) the magnetron and the ablation laser together, were recorded. Spectra (a) were dominated by Ar atoms and Ar+ ions. Emission lines of Ti and Si were detected, when Ti target and Si target was used, respectively. Spectra (b) revealed emission of C, C+, C2, Ar, Ar+. Spectra (c) showed presence of all previously mentioned species and further of Ti+ ions emission was detected. The research was supported by Grant Agency of the Czech Republic No. 202/06/02161, GA ASCR project number A1010110/01 and Institutional Research Plan AV CR No. AV0Z 10100522.  相似文献   

13.
A new seeded velocity measurement technique, N2O molecular tagging velocimetry (MTV), is developed to measure velocity in wind tunnels by photochemically creating an NO tag line. Nitrous oxide “laughing gas” is seeded into the air flow. A 193 nm ArF excimer laser dissociates the N2O to O(1D) that subsequently reacts with N2O to form NO. O2 fluorescence induced by the ArF laser “writes” the original position of the NO line. After a time delay, the shifted NO line is “read” by a 226-nm laser sheet and the velocity is determined by time-of-flight. At standard atmospheric conditions with 4% N2O in air, ∼1000 ppm of NO is photochemically created in an air jet based on experiment and simulation. Chemical kinetic simulations predict 800–1200 ppm of NO for 190–750 K at 1 atm and 850–1000 ppm of NO for 0.25–1 atm at 190 K. Decreasing the gas pressure (or increasing the temperature) increases the NO ppm level. The presence of humid air has no significant effect on NO formation. The very short NO formation time (<10 ns) makes the N2O MTV method amenable to low- and high-speed air flow measurements. The N2O MTV technique is demonstrated in air jet to measure its velocity profile. The N2O MTV method should work in other gas flows as well (e.g., helium) since the NO tag line is created by chemical reaction of N2O with O(1D) from N2O photodissociation and thus does not depend on the bulk gas composition.  相似文献   

14.
We have demonstrated proof-of-principle of an incoherent ArF emission source with a quasi-point emission geometry using a laser-produced plasma in an Ar/F2/He/Ne mixed gas. The VUV emission characteristics, such as the emission size, were dependent on those of the plasma-initiating laser. The average emission power was 10 μW at a repetition rate of 10 Hz at 193 nm. The average power conversion efficiency of the 193-nm emission from the plasma-initiating Nd:YAG laser was 6.3×10−6. The average emission power at 193 nm was proportional to that of the plasma-initiating laser, indicating the scaling of the emission source.  相似文献   

15.
UV absorption spectra of substituted 2-hydroxy-2-trifluoromethylchroman-4-ones (chromanones) in aqueous ethyleneglycol were studied. Replacement of hydrogen in the aromatic ring of the chromanones by CH3 or CF3 groups was shown to cause the molar extinction coefficients of the K, B, and C=O bands to shift from 16,160 to 27,980 and 30,250 dm3/mol·cm; from 12,750 to 17,920 and 16,130 dm3/mol·cm; and from 3850 to 3630 and 2760 dm3/mol·cm, respectively. Increasing the solution pH from 1 to 10.5 affected weakly the aromatic ring bands yet impacted greatly the chromanone carbonyl bands, causing their λmax to shift from 311–326 nm to 342–346 nm and their extinction coefficients to increase from 2760–3850 dm3/mol·cm to 9940–10,160 dm3/mol·cm. A further rise in the pH resulted in hypochromia of the carbonyl band due to the destruction of the chromanones. The results were confirmed by NMR spectroscopy and GC methods.  相似文献   

16.
Chlorinated hydrocarbons (CHC), photodissociated at 193 nm, are detected with high sensitivity by observing the atomic chlorine fragment via laser-induced fluorescence (LIF). Photofragment emission spectra from CH3Cl, CH2Cl2, CHCl3, CCl4, C2HCl3, and C2Cl4 demonstrate that photofragment fluorescence and chemiluminescence are negligible in the region 700–800 nm where the 3p 44p 4 S 0 3p 44s 4 P fluorescence from atomic chlorine is detected. There is also negligible interference for photodissociation in Ar, N2, and air bath gases. Total CHC can be readily detected in air flows at mixing fractions less than 20 ppb and averaging times less than 1 minute. Techniques for considerable improvement in this detection limit are discussed.Supported by the NSF  相似文献   

17.
We present the results of investigations of the electrical and optical characteristics of a negative-polarity corona discharge excited in systems of “pins-mesh” and “pins-plane” electrodes in a He/N2 mixture at atmospheric pressure. In order that such a corona discharge could be applied in systems of electric pumping of the working medium of atmospheric-pressure N2-lasers, the optimum conditions should be: the total pressure of the mixture ≤150 kPa and the nitrogen pressure ≤5 kPa. Uzhgorod State University, 46, Pidgirna St., Uzhgorod, 290000, Ukraine. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 64, No. 6, pp. 837–840, November–December, 1997.  相似文献   

18.
We report here the luminescence spectra of certain rare earth ions (Eu3+, Tb3+ & Ho3+) doped B2O3-BaO-LiF/AiF3 based on the measurements of emission and decay curves of prominent emission transitions. For both the reference host glasses, FTIR, XRD, DTA-TG profiles have been recorded to understand their structural and thermal properties. Eu3+ doped glasses have shown five emission transitions of 5D07F01,2,3 & 4 located at 580nm, 593nm, 615nm, 655nm and 704nm respectively with an excitation at λexci = 392 nm (7F05L6). Also under an UV source, these europium glasses have displayed a bright red emission from their surfaces. Tb3+ glasses have exhibited four emission bands of 5D47F6,5,4,3 at 491nm, 547nm, 588nm and 625nm respectively with an excitation at λexci = 376 nm (7F65G6). Intense green emission from the glass surfaces has been noticed upon exposure to the UV source. Prominently bluish-green emission has been noticed from the surfaces of the holmium glasses under an UV source and same emission transition (5F45I8) at 519 nm with an excitation at λexci = 389 nm (5I85G4) has also been obtained from their measured emission spectra. For all the prominent emissions of the rare earth glasses, decay curves have been measured to compute their lifetimes.  相似文献   

19.
The infrared spectrum of CF2Cl2 has been measured under medium resolution in the range 1600-400 cm?1. More than 100 bands including fundamental, overtone, combination, and “hot” bands of the three isotopic species CF235Cl2, CF235Cl37Cl, and CF237Cl2 have been identified. The band contour studies have enabled the fundamental vibrations to be unambiguously assigned, including the modes ν3 and ν7, the positions of which were previously in doubt. The observed values for CF235Cl2 in conjunction with the frequency shift data for CF235Cl37Cl and CF237Cl2 have been used in determining a general valence force field, which adequately describes the system investigated. A Fermi resonance interaction between ν8 and ν3 + ν9 levels for the three isotopic species has been interpreted. The corresponding perturbations between those levels obtained by adding ν2 or ν5 to both ν8 and ν3 + ν9 have also been found and the related features carefully investigated.  相似文献   

20.
According to UN estimations there are between 80 and 115 million activated landmines worldwide. These mines, or other unexploded ordnance (UXO), can be triggered accidentally and kill or injure more than 2000 civilians per month. The most common explosive in these mines is trinitrotoluene (TNT). In this paper, the potential of some of the most promising lasers for mine neutralisation is investigated, namely an ArF laser, a KrF excimer laser and a Nd:YAG solid-state laser. We have studied the interaction between laser beams emitting at λ=193 nm, 248 nm and 1060 nm and a bare solid sample of TNT of approximately 15 mg. Using pulsed excimer radiation at λ=193 nm, with an energy density up to 1 J/mm2, ablation of the TNT without any deflagration has been achieved. At λ=248 nm, using the KrF excimer laser with a pulse duration of 30 ns and a repetition rate of 5 Hz, the TNT sample started melting and burning after an irradiation of 10 s. Preliminary results with the Nd:YAG solid-state laser operating in cw emission have shown that the irradiated sample exhibits the desired burning behaviour even after the exposure is stopped. Received: 14 December 2000 / Accepted: 18 December 2000 / Published online: 20 June 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号