首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
We have studied the kinetic behaviours of irreversible aggregation-annihilation models with cluster removals. In the models, an irreversible aggregation reaction occurs between any two clusters of the same species and an irreversible annihilation reaction occurs simultaneously between two different species; meanwhile, the clusters of large size are gradually removed from the system. In a mean-field limit, we obtain the general solutions of the cluster-mass distributions for the cases with an arbitrary removal probability. We found that the cluster-mass distribution of either species satisfies a generalized or modified scaling form. The results also indicate that the evolution behaviours of the systems depend strongly on the details of the reaction events.  相似文献   

3.
4.
5.
6.
7.
8.
9.
The kinetic behavior of an n-species (n ≥ 3) aggregation-annihilation chain reaction model is studied. In this model, an irreversible aggregation reaction occurs between any two clusters of the same species, and an irreversible complete annihilation reaction occurs only between two species with adjacent number. Based on the rnean-field theory, we investigate the rate equations of the process with constant reaction rates to obtain the asymptotic solutions of the clustermass distributions for the system. The results show that the kinetic behavior of the system not only depends crucially on the ratio of the aggregation rate I to the annihilation rate J, but also has relation with the initial concentration of each species and the species number's odevity. We find that the cluster-mass distribution of each species obeys always a scaling law. The scaling exponents may strongly depend on the reaction rates for most cases, however, for the case in which the ratio of the aggregation rate to the annihilation rate is equal to a certain value, the scaling exponents are only dependent on the initial concentrations of the reactants.  相似文献   

10.
We present a scaling hypothesis for the distribution function of the shortest paths connecting any two points on a percolating cluster which accounts for (i) the effect of the finite size of the system and (ii) the dependence of this distribution on the site occupancy probability p. We test the hypothesis for the case of two-dimensional percolation.  相似文献   

11.
12.
We present a new Monte Carlo algorithm for studying site or bond percolation on any lattice. The algorithm allows us to calculate quantities such as the cluster size distribution or spanning probability over the entire range of site or bond occupation probabilities from zero to one in a single run which takes an amount of time scaling linearly with the number of sites on the lattice. We use our algorithm to determine that the percolation transition occurs at p(c) = 0.592 746 21(13) for site percolation on the square lattice and to provide clear numerical confirmation of the conjectured 4/3-power stretched-exponential tails in the spanning probability functions.  相似文献   

13.
We investigate the kinetic behavior of a two-species catalysis-driven aggregation model, in which coagulation of species A occurs only with the help of species B. We suppose the monomers of species B are stable and cannot selfcoagulate in reaction processes. Meanwhile, the monomers are continuously injected into the system. The model with a constant rate kernel is investigated by means of the mean-field rate equation. We show that the Mneties of the system depends crucially on the details of the input term. The injection rate of species B is assumed to take the given time- dependent form K(t) -t^λ, and the sealing solution of the duster size distribution is then investigated analytically. It is found that the cluster size distribution can satisfy the conventional or modified scaling form in most cases.  相似文献   

14.
For percolation on (RL)xL two-dimensional rectangular domains with a width L and aspect ratio R, we propose that the existence probability of the percolating cluster E(p)(L,epsilon,R) as a function of L, R, and deviation from the critical point epsilon can be expressed as F(epsilonL(y(t))R(a)), where y(t) identical with1/nu is the thermal scaling power, a is a new exponent, and F is a scaling function. We use Monte Carlo simulation of bond percolation on square lattices to test our proposal and find that it is well satisfied with a=0.14(1) for R>2. We also propose superscaling for other critical quantities.  相似文献   

15.
We present an exact solution for the distribution P(h(m),L) of the maximal height h(m) (measured with respect to the average spatial height) in the steady state of a fluctuating Edwards-Wilkinson interface in a one dimensional system of size L with both periodic and free boundary conditions. For the periodic case, we show that P(h(m),L)=L(-1/2)f(h(m)L(-1/2)) for all L>0, where the function f(x) is the Airy distribution function that describes the probability density of the area under a Brownian excursion over a unit interval. For the free boundary case, the same scaling holds, but the scaling function is different from that of the periodic case. Numerical simulations are in excellent agreement with our analytical results. Our results provide an exactly solvable case for the distribution of extremum of a set of strongly correlated random variables.  相似文献   

16.
We present a synthesis of theoretical results concerning the probability distribution of the concentration of a passive tracer subject to both diffusion and to advection by a spatially smooth time-dependent flow. The freely decaying case is contrasted with the equilibrium case. A computationally efficient model of advection-diffusion on a lattice is introduced, and used to test and probe the limits of the theoretical ideas. It is shown that the probability distribution for the freely decaying case has fat tails, which have slower than exponential decay. The additively forced case has a Gaussian core and exponential tails, in full conformance with prior theoretical expectations. An analysis of the magnitude and implications of temporal fluctuations of the conditional diffusion and dissipation is presented, showing the importance of these fluctuations in governing the shape of the tails. Some results concerning the probability distribution of dissipation, and concerning the spatial scaling properties of concentration fluctuation, are also presented. Though the lattice model is applied only to smooth flow in the present work, it is readily applicable to problems involving rough flow, and to chemically reacting tracers. (c) 2000 American Institute of Physics.  相似文献   

17.
We numerically investigate the Olami-Feder-Christensen model on a quenched random graph. Contrary to the case of annealed random neighbors, we find that the quenched model exhibits self-organized criticality deep within the nonconservative regime. The probability distribution for avalanche size obeys finite size scaling, with universal critical exponents. In addition, a power law relation between the size and the duration of an avalanche exists. We propose that this may represent the correct mean-field limit of the model rather than the annealed random neighbor version.  相似文献   

18.
We propose a monomer birth-death model with random removals, in which an aggregate of size k can produce a new monomer at a time-dependent rate I(t)k or lose one monomer at a rate J(t)k, and with a probability P(t) an aggregate of any size is randomly removed. We then anedytically investigate the kinetic evolution of the model by means of the rate equation. The results show that the scaling behavior of the aggregate size distribution is dependent crucially on the net birth rate I(t) - J(t) as well as the birth rate I(t). The aggregate size distribution can approach a standard or modified scaling form in some cases, but it may take a scale-free form in other cases. Moreover, the species can survive finally only if either I(t) - J(t) ≥ P(t) or [J(t) + P(t) - I(t)]t ≈ 0 at t ≥ 1; otherwise, it will become extinct.  相似文献   

19.
We present a generalized Fokker-Planck equation for the joint position-velocity probability distribution of a single fluid particle in a turbulent flow. Based on a simple estimate, the diffusion term is related to the two-point two-time Eulerian acceleration-acceleration correlation. Dimensional analysis yields a velocity increment probability distribution with normal scaling v approximately t(1/2). However, the statistics need not be Gaussian.  相似文献   

20.
We study a system of hard-core particles sliding locally downwards on a fluctuating one-dimensional surface characterized by a dynamical exponent z and no overall tilt. In numerical simulations, an initially random particle density is found to coarsen and obey scaling with a growing length scale approximately t(1/z). The structure factor deviates from the Porod law for the models studied. The steady state is unusual in that the density-segregation order parameter shows strong fluctuations. The two-point correlation function has a scaling form with a cusp at small argument which we relate to a power law distribution of particle cluster sizes. Exact results on a related model of surface depths provide insight into this behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号