首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the results of ab initio calculations on LiF, NaF, BeO, MgO and their anions. Our vertical electron affinities of BeO and LiF are 2.10 and 0.31 eV, respectively. Our BeO electron affinity is 0.33 eV larger and our LiF electron affinity 0.11 eV smaller than the corresponding values of Jordan et al. We also predict stable anions of NaF and MgO, the calculated vertical electron affinities being 0.42 and 2.64 eV, respectively. The variation with bond length of the dipole moments and the Koopmans' theorem and Hartree-Fock estimates of the electron affinities is studied.  相似文献   

2.
Investigations are continued into the usefulness of semi-empirical molecular orbital techniques to the calculation of the electronic properties of ionic crystals. The cluster model is used, on which the molecular orbital calculations are made, with the remaining material approximated by the inclusion of a Madelung potential derived from those atoms not in the cluster. Applications have been made to the bulk properties of LiF and MgO, with very good results. Surface properties of MgO have been investigated using a surface Madelung potential to represent the remaining crystal; the results in this case show a closure in the band gap on approaching the surface, which is consistent with experimental observations. The long term aim of the work is to provide a simple, computationally viable method for the investigation of complex defects in ionic crystals. To this end we have performed a calculation on the U centre in LiF. Consistently good results have been obtained for all these properties showing that this is a viable method for these systems and that complex defects may be approached with some optimism that the method provides a useful tool.  相似文献   

3.
Closed-shell contacts between two copper(I) ions are expected to be repulsive. However, such contacts are quite frequent and are well documented. Crystallographic characterization of such contacts in unsupported and bridged multinuclear copper(I) complexes has repeatedly invited debates on the existence of cuprophilicity. Recent developments in the application of Bader's theory of atoms-in-molecules (AIM) to systems in which weak hydrogen bonds are involved suggests that the copper(I)-copper(I) contacts would benefit from a similar analysis. Thus the nature of electron-density distributions in copper(I) dimers that are unsupported, and those that are bridged, have been examined. A comparison of complexes that are dimers of symmetrical monomers and those that are dimers of two copper(I) monomers with different coordination spheres has also been made. AIM analysis shows that a bond critical point (BCP) between two Cu atoms is present in most cases. The nature of the BCP in terms of the electron density, ρ, and its Laplacian is quite similar to the nature of critical points observed in hydrogen bonds in the same systems. The ρ is inversely correlated to Cu-Cu distance. It is higher in asymmetrical systems than what is observed in corresponding symmetrical systems. By examining the ratio of the local electron potential-energy density (V(c)) to the kinetic energy density (G(c)), |V(c)|/G(c) at the critical point suggests that these interactions are not perfectly ionic but have some shared nature. Thus an analysis of critical points by using AIM theory points to the presence of an attractive metallophilic interaction similar to other well-documented weak interactions like hydrogen bonding.  相似文献   

4.
Four atomic charge formalisms are compared using highly ionic diatomic molecules, such as LiF, NaF, KF, LiCl, NaCl, KCl, BF, AlF, GaF, BeO, and MgO. All calculations were done at the QCISD/6‐311G(2df) level. The only formalism consistent with the characteristics of all these systems is Quantum theory of atoms in molecules (QTAIM). Absolute Mulliken charge values are small. ChelpG charges are not reliable for systems in which the atoms are largely anisotropic. Generalized atomic polar tensor values are contaminated with charge fluxes and atomic dipole fluxes and fail when these contributions are important and do not cancel each other. Finally, the charge–charge flux–dipole flux model was applied to dipole moment derivatives with QTAIM. This analysis shows that charge flux and atomic dipole flux contributions during bond stretching are almost null, except for oxides. There are also evidences that the lone electron pair at Group 13 elements in fluorides becomes less localized as the bond is stretched. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

5.
6.
The electron momentum distributions (EMD's) and Compton profiles (CP's) of LiF, LiCl, NaF and NaCI have been calculated using the floating spherical gaussian orbital (FSGO) model wavefunctions. The calculated FSGO Compton profiles are in good agreement with the available experimental data considering the simplicity of the model used. The calculated EMD and CP values in these systems are nearly equal to the sum of the contributions of respective cations and anions.  相似文献   

7.
Within the framework of the HMO approximation and an equal bond model, quantitative characteristics are proposed for the alternation of electron density on the atoms and bonds of an unsubstituted chain of polymethine dyes with arbitrary end-groups. These characteristics can be used, depending on the type of electron distribution, to classify a compound as a polymethine or polyene. A structural parameter determined by the nature of the end-groups has been found, this parameter being responsible for realization of one type of electron density distribution or the other in the polymethine chain.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 24, No. 2, pp. 129–138, March–April, 1988.  相似文献   

8.
Energetics and the charge distributions in azacubanes (C8NH8–) have been obtained using the ab initio Hartree–Fock, second-order Mø øller–Plesset perturbation theory and hybrid density functional methods. For diazacubane to hexaazacubane the lowest-energy conformers have nitrogen atoms occupying the face opposite corners of a cube. The topography of the molecular electrostatic potential and the electron density of azacubane conformers have been investigated. The electrostatic potential studies have shown that successive substitution of nitrogen instead of CH groups of cubane engenders smaller and more localized electron-rich regions around the nitrogens of a cube. Further the bond ellipticity and the electron density at the bond critical point of the X–N bonds (X=C or N) in a cubanoid increase from azacubane to octaazacubane. The heats of formation of azacubanes calculated by the isodesmic reaction approach using different levels of theory correlate well with the electron density at the bond critical point of X–N (X=C or N) bonds in a cubanoid.  相似文献   

9.
We have recently developed a new class IV charge model for calculating partial atomic charges in molecules. The new model, called charge model 3 (CM3), was parameterized for calculations on molecules containing H, Li, C, N, O, F, Si, S, P, Cl, and Br by Hartree–Fock theory and by hybrid density functional theory (HDFT) based on the modified Perdew–Wang density functional with several basis sets. In the present article, we extend CM3 for calculating partial atomic charges by Hartree–Fock theory with the economical but well balanced MIDI! basis set. Then, using a test set of accurate dipole moments for molecules containing nitramine functional groups (which include many high-energy materials), we demonstrate the utility of several parameters designed to improve the charges in molecules containing both N and O atoms. We also show that one of our most recently developed CM3 models that is designed for use with wave functions calculated at the mPWXPW91/MIDI! level of theory (where X denotes a variable percentage of Hartree–Fock exchange) gives accurate charge distributions in nitramines without additional parameters for N and O. To demonstrate the reliability of partial atomic charges calculated with CM3, we use these atomic charges to calculate polarization free energies for several nitramines, including the commonly used explosives 1,3,5-trinitro-s-triazine (RDX) and 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (HNIW), in nitromethane. These polarization energies are large and negative, indicating that electrostatic interactions between the charge distribution of the molecule and the solvent make a large contribution to the free energy of solvation of nitramines. By extension, the same conclusion should apply to solid-state condensation. Also, in contrast to some other charge models, CM3 yields atomic charges that are relatively insensitive to the presence of buried atoms and small conformational changes in the molecule, as well as to the level of treatment of electron correlation. This type of charge model should be useful in the future development of solvation models and force fields designed to estimate intramolecular interactions of nitramines in the condensed phase.  相似文献   

10.
Researchers are developing conceptually based models linking the structure and dynamics of molecular charge density to certain properties. Here we report on our efforts to identify features within the charge density that are indicative of instability and metastability. Towards this, we use our extensions to the quantum theory of atoms in molecules that capitalize on a molecule’s ridges to define a natural simplex over the charge density. The resulting simplicial complex can be represented at various levels by its 0‐, 1‐, and 2‐skeleton (dependent sets of points, lines, and surfaces). We show that the geometry of these n‐skeletons retains critical information regarding the structure and stability of molecular systems while greatly simplifying charge density analysis. As an example, we use our methods to uncover the fingerprints of instability and metastability in two much‐discussed systems, that is, the di‐benzene complex and the He and adamantane inclusion complex.  相似文献   

11.
The molecular structure can be defined quantum mechanically thanks to the theory of atoms in molecules. Here, we report a new molecular model that reflects quantum mechanical properties of the chemical bonds. This graphical representation of molecules is based on the topology of the electron density at the critical points. The eigenvalues of the Hessian are used for depicting the critical points three-dimensionally. The bond path linking two atoms has a thickness that is proportional to the electron density at the bond critical point. The nuclei are represented according to the experimentally determined atomic radii. The resulting molecular structures are similar to the traditional ball and stick ones, with the difference that in this model each object included in the plot provides topological information about the atoms and bonding interactions. As a result, the character and intensity of any given interatomic interaction can be identified by visual inspection, including the noncovalent ones. Because similar bonding interactions have similar plots, this tool permits the visualization of chemical bond transferability, revealing the presence of functional groups in large molecules.  相似文献   

12.
The algorithm of high-precision optimization of basis functions suggested previously for calculating the analytical Hartree–Fock orbitals of closed-shell atoms is generalized to open-shell systems described by the Roothaan method (1960). Expressions for the first (free gradient) and second (Hesse matrix) derivatives of the system's energy with respect to the nonlinear parameters (orbital exponents) of the basis functions are derived in terms of density matrices for the filled and open shells. An algorithm is proposed for high-precision optimization of the nonlinear parameters using these equations based on Murtagh–Sargent and Newton minimization procedures. To illustrate the application of this algorithm, we give optimization of the basis sets of Slater type functions for atoms from the second row, as well as for Al, Si, P, K, Sc, and Fe atoms. The analytical Hartree–Fock orbitals giving nearly Hartree–Fock energies are calculated with a high degree of accuracy.  相似文献   

13.
The electron density distribution of the ferrimagnetic MnCu(pba)(H2O)3.2H2O chain compound, where pba stands for 1,3-propylenebis(oxamato), has been derived from high resolution X-ray diffraction measurements at 114 K using a multipolar model. The analysis of the chemical bonding has been carried out through the "Atoms in Molecules" formalism and thoroughly interpreted with regards to the strong intrachain and weak interchain magnetic couplings. The topological properties of the electron density on the oxamato bridge indicate large electron delocalization and conjugation effects, in addition to high charge transfer from both metals to the bridge. The resulting positive charges on Mn (+1.45 e) and Cu (+1.56 e) induce charge polarization of the bridge, leading to a shift of electron density from the central C atoms to the metal coordinating O and N atoms. The Mn-bridge interactions are mainly closed-shell interactions with low electron density at the corresponding bond critical points, whereas the Cu-bridge interactions exhibit significant covalent character. The Cu-N bonds are moreover stronger than the Cu-O bonds. The 3d Cu and Mn orbital populations are consistent with pyramidal and regular octahedral environments, respectively, in agreement with the loss of degeneracy due to ligand field effects. Interchain interaction pathways are evidenced by the existence of four bond critical points in hydrogen bond regions. Finally, these intrachain and interchain bonding features are correlated to the results of experimental and theoretical spin density distributions, as well as magnetic measurements.  相似文献   

14.
The topological analysis of the 2-amino-5-nitropyridinium dihydrogen phosphate, 2A5NPDP, and the experimental electron density distribution determined from X-ray diffraction data interpreted in terms of the Hansen & Coppens pseudoatom formalism [1] is presented. The bond critical point properties of the total experimental electron density agree fairly well with ab initio Hartree-Fock calculations for the isolated ions. The analysis of the hydrogen-bond critical points shows the crystal H-bond framework to involve four anions and one cation. All the H-bond critical points show small positive 2(r) values, consistent with ionic closed-shell interactions between the participant atoms.  相似文献   

15.
In the Auger electron spectra (AES) simulations, we define theoretical modified kinetic energies of AES in the density functional theory (DFT) calculations. The modified kinetic energies correspond to two final-state holes at the ground state and at the transition-state in DFT calculations, respectively. This method is applied to simulate Auger electron spectra (AES) of 2nd periodic atom (Li, Be, B, C, N, O, F)-involving substances (LiF, beryllium, boron, graphite, GaN, SiO2, PTFE) by deMon DFT calculations using the model molecules of the unit cell. Experimental KVV (valence band electrons can fill K-shell core holes or be emitted during KVV-type transitions) AES of the (Li, O) atoms in the substances agree considerably well with simulation of AES obtained with the maximum kinetic energies of the atoms, while, for AES of LiF, and PTFE substance, the experimental F KVV AES is almost in accordance with the spectra from the transitionstate kinetic energy calculations.  相似文献   

16.
In this paper, peculiarities are considered of the angular dependence of the intensity of elastic scattering of fast electrons by dipolar LiH molecules, calculated in the isst Born approximation using Ransil's wavefunction. The molecular component of the scattering intensity is determined. lt is shown that the contribution of chemical bond effects to the intensity of electron scattering by molecules featuring highly polar bonds includes the part which is formally analogous to the structure dependent part of the intensity. Numerical integration of the Fourier transform of the molecular electron density was utilized to calculate the intensity of elastic electron scattering by LIH, LiF and LhO molecules, using HartreeùFock molecular wavefunctions. The major portion of the contribution of chemical bond effects to the intensity of electron scattering by the highly polar (ionic) LiF and Li20 molecules is made up by the ǒioniǒ contribution due to a redistribution of electrons between atoms making up an ionic molecule. A model is suggested of independent ions in a molecule, which correctly describes the “ionic” contribution of chemical bond effects to the intensity of electron scattering by highly polar molecules and is suitable for practical utilization for interpreting electron-diffraction patterns.  相似文献   

17.
Quantum-chemical calculations of the cyanide ion adsorption from aqueous solutions on copper metals are performed for the first time in a combined molecular–continuum model of polar solvent. The calculations use the cluster model of the surface and are carried out by the density functional in the B3LYP version. The effect of the adsorption system's polar dielectric environment is considered in a self-consistent reactive field model, namely, the SCIPCM model. The dielectric cavity is built in SCIPCM self-consistently with the particle's electron density distribution in solution. Calculations show that the CN adsorption energy decreases in the sequence Au > Cu > Ag. The calculated energy agrees best with the experimental data when the molecular–continuum model is used, rather than the simpler molecular and continuum models.  相似文献   

18.
An efficient method for computing the quantum theory of atoms in molecules (QTAIM) topology of the electron density (or other scalar field) is presented. A modified Newton–Raphson algorithm was implemented for finding the critical points (CP) of the electron density. Bond paths were constructed with the second‐order Runge–Kutta method. Vectorization of the present algorithm makes it to scale linearly with the system size. The parallel efficiency decreases with the number of processors (from 70% to 50%) with an average of 54%. The accuracy and performance of the method are demonstrated by computing the QTAIM topology of the electron density of a series of representative molecules. Our results show that our algorithm might allow to apply QTAIM analysis to large systems (carbon nanotubes, polymers, fullerenes) considered unreachable until now. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Fluid-phase equilibria, including dew points, bubble points, and critical points were measured for four binary systems composed of a chlorosilane and carbon dioxide. The measurements were carried out in a constant-composition, variable-volume cell equipped with a sapphire window, which allowed visual observation of the phases in the cell. A syringe pump was used to inject the CO2 into the cell and to control its pressure. Methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, and diethyldichlorosilane up to about 0.14 mol fraction were studied in this apparatus and a total of 243 phase-boundary points were obtained. Displacements in the critical point with respect to pure CO2 of up to 11.81 MPa and 348.05 K were observed. Modeling of the fluid-phase equilibria for three of the four binary systems was done using the Peng–Robinson equation of state, standard van der Waals mixing rules with two binary interaction parameters, and a φ–φ formulation of the equilibrium. The binary interaction parameters were obtained by fitting the model to the experimental data. The model produced excellent agreement between computed and experimental data. Graphical representations of the modeling results are presented and compared to experimental results. The results indicate that the largest chlorosilane (diethyldichlorosilane) produced the largest shift in critical pressure and critical temperature with respect to pure CO2.  相似文献   

20.
This work provides a novel interpretation of elementary processes of photophysical relevance from the standpoint of the electron density using simple model reactions. These include excited states of H2 taken as a prototype for a covalent bond, excimer formation of He2 to analyze non‐covalent interactions, charge transfer by an avoided crossing of electronic states in LiF and conical interesections involved in the intramolecular scrambling in C2H4. The changes of the atomic and interaction energy components along the potential energy profiles are described by the interacting quantum atoms approach and the quantum theory of atoms in molecules. Additionally, the topological analysis of one‐ and two‐electron density functions is used to explore basic reaction mechanisms involving excited and degenerate states in connection with the virial theorem. This real space approach allows to describe these processes in a unified way, showing its versatility and utility in the study of chemical systems in excited states. © 2017 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号