首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermally stimulated luminescence (TSL) of undoped and doped CaSO4 with activators such as Cu and Mn has been investigated. The polycrystalline samples of undoped and doped CaSO4 are prepared by the melting method. The formation of CaSO4 compound is confirmed by X-ray diffraction and Fourier transform infrared studies. Scanning electron microscopic studies of CaSO4 are also carried out.

The TSL glow curves of undoped CaSO4, Cu- and Mn-doped CaSO4 are studied. Comparison of the thermoluminescence (TL) intensity of the most intensive glow peak of Cu-doped CaSO4 compound with that of undoped CaSO4 shows that addition of Cu impurity in CaSO4 compound enhances the TL intensity by about four times. However, the addition of Mn impurity to undoped CaSO4 increases the TL intensity by about three times when compared with that of undoped CaSO4. The TL-dose dependence of all three samples was studied and was observed to be almost linear in the studied range of irradiation time. Among the samples studied, namely undoped CaSO4 and Cu- and Mn-doped CaSO4, Cu-doped CaSO4 is found to be the most sensitive. The trap parameters, namely order of kinetics (b), activation energy (E) and frequency factor (s) associated with the most intensive glow peaks of CaSO4:Mn, CaSO4:Cu and CaSO4 phosphors were determined using the glow curve shape (Chen's) method.  相似文献   

2.
J. Manam  S. Das   《Current Applied Physics》2009,9(6):1257-1262
The XRD and SEM and TSL studies of the as prepared pure, Cu and Mn doped CaSO4 have been carried out. From the comparative TSL studies it has been seen that the 137 °C glow peak of CaSO4:Cu is superior to undoped and Mn doped CaSO4 compounds as well as other Cu doped alkaline earth sulphates. Evaluation of trapping parameters of the most intensive glow peak Cu (0.5 mol%) doped CaSO4 is accomplished by a technique named isothermal luminescence decay method and comparison of these parameters with the previously calculated trapping parameters by glow curve shape method (Chen’s method) have been done. It is observed that the most intensive glow peak of Cu doped CaSO4 is found to obey second order kinetics, because of availability of vacant traps for retrapping to take place. Moreover the effect of various doping concentration of Cu on the TSL glow curve and reproducibility of Cu doped CaSO4 has also studied.  相似文献   

3.
ZrO2 pellets doped by ZnO after 302 nm UV irradiation have been studied for ThermoLuminescent (TL) glow. The TL peak at 90°C for the 1100°C sintered ZrO2 pellet shifted to 85°C with intensity increased three times for the 1% ZnO doped ZrO2 sintered at 1100°C. The peak intensity at 210°C for the doped one is only one tenth of the undoped one. The emission spectra of thermoluminescence for undoped and ZnO-doped ZrO2 revealed that the effect of ZnO doping is to increase the number of luminescent centers. The trapping center associated to the 90°C TL peak is explained by the similar model as that of Kirsh et al. For the case of 210°C TL peak, we have proposed two different models of trapping centers; one is the Zr4+ in an asymmetrical oxygen arrangement, and the other is the defect complex formed from an oxygen vacancy and an anion.  相似文献   

4.
The determination of trapping parameters such as order of kinetics, activation energy and frequency factor is one of the most important studies in the field of thermally stimulated luminescence (TSL). A polycrystalline sample of Mn-doped Li2B4O7 was prepared by melting method. The formation of the doped compound was checked by Fourier transform infrared study. The TSL study of the Mn-doped lithium tetraborate sample shows two glow peaks at 190 °C and 310 °C, of which the intensity of the 310 °C glow peak is the maximum. In this paper, the trapping parameters associated with the prominent glow peak of Mn-doped lithium tetraborate were reported using the isothermal luminescence decay and glow curve shape (Chen's) methods. Our results show a very good agreement between the trapping parameters calculated by the two methods.  相似文献   

5.
In the given study, the thermoluminescence (TL) properties of copper (Cu)-doped ZnS thin films were investigated after β-irradiation at room temperature (RT). It was observed that the glow curve of this material has two broad TL peaks, in which one of them was centered at about 110 °C and the other at about 170 °C for a heating rate of 1 °C s−1 in the temperature range from RT to 350 °C. The additive dose (AD), Tm(Ea)−Tstop, repeated initial rise (RIR), variable heating rate (VHR) and computerized glow curve deconvolution (CGCD) methods were used to analyze its glow curves. These methods indicated that the glow curve of this material is the superposition of a number of first- and general-order glow peaks, or at least due to the distribution of traps. The dose responses and fading process of both peaks were also examined, and it was observed that the dose responses of both peaks have similar pattern. First they follow a good linearity with different slopes and then saturate at approximately same dose level (2 kGy). The low-temperature broad peak nearly disappeared after 1 week storage in the dark at RT. On the other hand, the intensity of the high-temperature broad peak was approximately reduced to 50% of its original value. The TL emission spectrum of this material has two main emission bands, namely, the blue and green bands. The first glow peak emits predominantly in blue region, whereas the second glow peak in the green region.  相似文献   

6.
Thermoluminescence properties of barium strontium mixed sulfate have been studied by irradiation with Argon ions. The sample was recrystallized by chemical co-precipitation techniques using H2SO4. The X-ray diffraction study of prepared sample suggests the orthorhombic structure with average grain size of 60 nm. The samples were irradiated with 1.2 MeV Argon ions at fluences varying between 1011 and 1015 ions/cm2. The argon ions penetrate to the depth of 1.89 μm and lose their energy mainly via electronic stopping. Due to ion irradiation, a large number of defects in the sample are formed. Thermally stimulated luminescence (TSL) glow curves of ion irradiated Ba0.12Sr0.88SO4 phosphor exhibit broad peak with maximum intensity at 495 K composed of four overlapping peaks. This indicates that different sets of traps are being activated within the particular temperature range each with its own value of activation energy (E) and frequency factor (s). Thermoluminescence (TL) glow curves were recorded for each of the ion fluences. A linear increase in intensity of TL glow peaks was found with the increase in ion dose from 59 kGy to 5.9 MGy. The kinetic parameters associated with the prominent glow peaks were calculated using glow curve deconvolution (GCD), different glow curve shape and sample heating rate methods.  相似文献   

7.
Nanoparticles of BaSO4:Eu with grain size in the range 30-50 nm have been prepared by the chemical co-precipitation method and characterized by UV-visible spectrometry and X-ray diffraction (XRD). Shape and size of the prepared nanomaterials were observed by a scanning electron microscope (SEM). The optical energy band gaps of the micro- and nanocrystalline BaSO4:Eu were determined and are found to be 3.39±0.0136 and 3.48±0.0139 eV, respectively. The thermoluminescence (TL) glow curve of BaSO4:Eu nanoparticles has been studied and compared with that of the corresponding microcrystalline powder. It has been observed that the TL glow peak at 497 K, seen prominently in the microcrystalline sample, appeared as a small peak in nanocrystalline powder, while that observed as a shoulder in the former at 462 K dominates in the latter. The observed TL sensitivity of the prepared nanocrystalline powder is less than that of the microcrystalline sample at low doses, while it is more at higher doses. This nanophosphor exhibits a linear/sublinear TL response to γ-radiation over a very wide range of exposures (0.1 Gy to 7 KGy), which is much wider compared to that of the microcrystalline counterpart (0.1-10 Gy). This response over a large span of exposures makes the nanostructure form of BaSO4:Eu useful for its application to estimate low as well as high exposures of γ-rays.  相似文献   

8.
The luminescence excitation spectra, emission spectra under photo- and X-ray excitation, luminescence decay kinetics and thermostimulated luminescence (TSL) of Gd3Ga5O12 garnet (GGG) polycrystalline samples have been investigated. It was established that the spectrum of Cr3+ ion emission were present in all TSL peaks. The activation energies of traps that are responsible for appearance of TSL in the region 295-600 K were estimated. It is shown that delocalization of electrons from the Cr3+e traps leads to the appearance of thermoluminescence (TL) glow peak at 390 K. The nature of other TSL peaks is discussed. The influence of visible light on the TSL intensity of the preliminary X-ray-irradiated samples is shown.  相似文献   

9.
This paper describes a detailed experimental study of the thermoluminescence (TL) properties of four binary lead-silicate glasses, with PbO concentrations ranging from 32% to 62% in mole percent. The TL glow peaks between room temperature and 300 °C were analyzed using a systematic thermal cleaning technique. The Tmax-Tstop and E-Tstop methods of analysis were used to identify the number of peaks under the glow curves, and to obtain the activation energy E for each TL trap. A computerized glow curve fitting analysis is used to fit the experimental data to four first-order peaks with maxima at temperatures of 54, 80, 110 and 210 °C, as measured with a heating rate of 2 °C/s. The kinetic parameters of the glow-peak at 210 °C were confirmed by using phosphorescence decay methods of analysis. The TL traps associated with the low-temperature TL peak at 54 °C are found to depend strongly on the PbO concentration of the samples, while the higher-temperature TL peaks show a behavior independent of the PbO concentration. The activation energy E and frequency factor s of the low-temperature TL trap associated with the peak at 54 °C are consistent with a trap involving a delocalized transition through the conduction band. However, the activation energies and frequency factors for the higher-temperature TL traps are consistent with traps involving localized transitions via an excited state below the conduction band. The data suggest that these higher-temperature TL traps are associated with the common silicate matrix in these binary silicate glasses.  相似文献   

10.
Polycrystalline KMgSO4Cl:Eu and Na5(PO4)SO4:Ce phosphors prepared by a wet chemical method have been studied for its photoluminescence (PL) and thermoluminescence (TL) characteristics. The TL glow curve of the compound has a prominent peak at 200 °C and may be useful for TL study. TL sensitivity of the KMgSO4Cl:Eu phosphor is found to be 1.7 times less than that of TLD—CaSO4:Dy. The presence of bands at around 420, 435 and 445 nm in the PL emission spectra of the phosphor suggests the presence of Eu2+ in the host compound. Moreover a TL glow curve of the Na5(PO4)SO4:Ce gives a better understanding of the TL mechanism (peaks at 271 and 310 °C) involved in the concerned phosphor. The PL emission spectra are observed at 382 nm for the various concentrations. In this paper we report PL and TL characteristics of KMgSO4Cl:Eu halosulphate and Na5(PO4)SO4:Ce phosphate sulphate phosphors first time.  相似文献   

11.
The influence of dopant TiO2 and co-dopant MgO on the thermoluminescence (TL) properties of lithium potassium borate glass (LKB) is reported in this paper. The glow curve exhibits a prominent peak (Tm) at 230 °C. The TL intensity was enhanced by a factor of ~3 due to the incorporation of MgO, and this was attributed to the creation of extra electron traps mediated by radiative recombination energy transfer. We achieved good linearity of the TL yield with dose, low fading, excellent reproducibility and a promising effective atomic number (Zeff=8.89), all of which are highly suitable for dosimetry. The effect of heating rate, sunlight and dose rate on the TL are also examined. These attractive features demonstrate that our dosimeter is useful in medical radiation therapy.  相似文献   

12.
Yttrium borate doped with uranium was prepared by mixing and heating yttrium oxide obtained through oxalate precipitation route, boric acid and requisite amount of nuclear-grade uranium oxide at high temperature. Photoluminescence (PL), thermally stimulated luminescence (TSL) and electron paramagnetic resonance (EPR) studies were carried out on gamma-irradiated doped/undoped yttrium borate samples in the temperature range 300-600 K. TSL studies showed the presence of two glow peaks at 414 and 471 K. PL studies along with lifetime decay investigation suggested uranium goes in the matrix as UO22+. EPR studies showed the presence of O2radical ion along with electron trapped in defect centres, which might have been produced for charge compensation. Apart from this, CO2 radical was also observed in the system having its origin from residual oxalate ion. Temperature dependence EPR studies of the observed radical confirmed the involvement of the CO2 and dioxide radical ion in the observed glow peaks. By correlating the TSL, PL and ESR data, probable mechanism is proposed for the observed TSL glow in the system.  相似文献   

13.
Lithium Calcium borate (LiCaBO3) polycrystalline thermoluminescence (TL) phosphor doped with rare earth (RE3+) elements has been synthesized by high temperature solid state diffusion reaction. The reaction has produced a very stable crystalline LiCaBO3:RE3+ phosphors. Among these RE3+ doped phosphors thulium doped material showed maximum TL sensitivity with favorable glow curve shape. TL glow curve of gamma irradiated LiCaBO3:Tm3+ samples had shown two major well-separated glow peaks at 230 and 430 °C. The glow peak at 430 °C is almost thrice the intensity of the glow peak at 230 °C. The TL sensitivity of the phosphor to gamma radiation was about eight times that of TLD-100 (LiF). Photoluminescence and TL emission spectra showed the characteristic Tm3+ peaks. TL response to gamma radiation dose was linear up to 103 Gy. Post-irradiation TL fading on storage in room temperature and elevated temperatures was studied in LiCaBO3:Tm3+ phosphor.  相似文献   

14.
LiMgPO4:Tb3+ phosphor was synthesized by solid state reaction. The thermally stimulated luminescence (TSL) glow curve of Tb doped LiMgPO4 exhibits a main TSL peak at 170 °C with shoulders at 100 and 260 °C on either side of this peak. The TSL sensitivity of the phosphor was found to be about 2.5 times that of CaSO4:Dy phosphor. TSL emission and photoluminescence (PL) studies show that Tb3+ ion acts as luminescence centre in this phosphor. The kinetic parameters, namely activation energy (E) and frequency factor (s) associated with the main glow peak have been determined using peak shape method. The activation energy and frequency factor obtained are 1.35 ± 0.03 eV and (6.53 ± 0.43) × 1014 s?1 respectively. The paper discusses the dosimetric characteristics like dose response, fading, energy response and minimum detectable dose and results thereof.  相似文献   

15.
Thermoluminescence (TL) and photoluminescence studies have been carried out on CaSO4:Tb, CaSO4:Ce and CaSO4:Tb,Ce phosphors with the aim of studying energy transfer process in the CaSO4:Tb,Ce phosphor. CaSO4:Tb,Ce shows TL peaks at 150, 220, 320 and 400°C. Changes in Tb and Ce concentrations influence the relative heights of these glow peaks. Co-doping with 0.1 mol% of Ce in CaSO4:Tb enhances the sensitivity of 320oC TL peak by a factor of 15. Fluorescence results show that there is energy transfer from Ce to Tb ion. The defect centres formed in CaSO4:Tb,Ce phosphor are studied using electron spin resonance technique. The 320oC glow peak correlates with a centre (SO3radical) with g-values: g||=2.0061 and g=2.0026.  相似文献   

16.
Samples of natural andalusite (Al2SiO5) crystal have been investigated in terms of thermoluminescence (TL) and electron paramagnetic resonance (EPR) measurements. The TL glow curves of samples previously annealed at 600 °C for 30 min and subsequently gamma-irradiated gave rise to four glow peaks at 150, 210, 280 and 350 °C. The EPR spectra of natural samples heat-treated at 600 °C for 30 min show signals at g=5.94 and 2.014 that do not change after gamma irradiation and thermal treatments. However, it was observed that the appearance of a paramagnetic center at g=1.882 for the samples annealed at 600 °C for 30 min followed gamma irradiation. This line was attributed to Ti3+ centers. The EPR signals observed at g=5.94 and 2.014 are due to Fe3+. Correlations between EPR and TL results of these crystals show that the EPR line at g=1.882 and the TL peak at 280 °C can be attributed to the same defect center.  相似文献   

17.
A new phosphor in the Cl-F system doped with Dy, Ce and Eu has been reported. Characterization of this phosphor using XRD, PL and TL techniques is described. Polycrystalline Na6(SO4)2FCl:Dy; Na6(SO4)2FCl:Ce and Na6(SO4)2FCl:Eu phosphors prepared by a solid state diffusion method have been studied for their X-ray diffraction, photoluminescence (PL) and thermoluminescence (TL)characteristics. The PL excitation and emission spectra of phosphors were obtained. Dy3+ emission in the host at 475 and 570 nm is observed due to 4F9/26H15/2 and 4F9/26H13/2 transition, respectively, whereas the PL emission spectra of Na6(SO4)2FCl:Ce phosphor shows the Ce3+ emission at 322 nm due to 5d→4f transition of Ce3+ ion. In Na6(SO4)2FCl:Eu lattice, Eu2+ as well as Eu3+ emissions are observed. The emission of europium ion in this compound exhibits the blue as well as red emission. The TL glow curves of the same compounds have the simple structure with a prominent peak at 150, 175 and 200 °C. TL response, fading, reusability and trapping parameters of the phosphors are also studied. The TL glow curves of γ-irradiated Na6(SO4)2FCl sample show one glow peak indicating that only one set of traps is being activated within the particular temperature range each with its own value of activation energy (E) and frequency factor (s). The trapping parameters associated with the prominent glow peak are calculated using Chen’s half width method. The release of hole/electron from defect centers at the characteristic trap site initiates the luminescence process in these materials. The intensity of the TL glow peaks increases with increase of the added γ-ray dose to the samples.  相似文献   

18.
Optically stimulated luminescence (OSL) in Cu and Eu doped K3Na(SO4)2 is reported for the first time. The Cu-doped sample shows OSL sensitivity which gets enhanced by co-doping with Mg2+ ions. The Cu-doped and quenched sample shows better sensitivity which is almost double than that of the slowly cooled sample, whereas the sensitivity of Mg co-doped sample remains nearly same irrespective of the thermal treatment. The Cu-doped sample shows TL peak around 200 °C and moderate OSL sensitivity. Doping of Mg shifts the TL peak to around 160 °C and is correlated with good OSL sensitivity. Eu-doped sample does not show OSL sensitivity. However, relatively good OSL sensitivity is observed in Aluminium co-doped and slowly cooled sample, which is about 15% of the commercial Al2O3:C(Landuer Inc.). A near fully optically sensitive TL peak around 155 °C is observed. The dose response is linear and practically no OSL fading is observed in first five days of storage in slowly cooled sample. This study on conventional sulphate-based TL phosphors will be useful in developing OSL phosphors for radiation dosimetry.  相似文献   

19.
Thermoluminescence (TL) measurements were carried out on undoped and Mn2+ doped (0.1 mol%) yttrium aluminate (YAlO3) nanopowders using gamma irradiation in the dose range 1–5 kGy. These phosphors have been prepared at furnace temperatures as low as 400 °C by using the combustion route. Powder X-ray diffraction confirms the orthorhombic phase. SEM micrographs show that the powders are spherical in shape, porous with fused state and the size of the particles appeared to be in the range 50–150 nm. Electron Paramagnetic Resonance (EPR) studies reveal that Mn ions occupy the yttrium site and the valency of manganese remains as Mn2+. The photoluminescence spectrum shows a typical orange-to-red emission at 595 nm and suggests that Mn2+ ions are in strong crystalline environment. It is observed that TL intensity increases with gamma dose in both undoped and Mn doped samples. Four shouldered TL peaks at 126, 240, 288 and 350 °C along with relatively resolved glow peak at 180 °C were observed in undoped sample. However, the Mn doped samples show a shouldered peak at 115 °C along with two well defined peaks at ~215 and 275 °C. It is observed that TL glow peaks were shifted in Mn doped samples. The kinetic parameters namely activation energy (E), order of kinetics (b), frequency factor (s) of undoped, and Mn doped samples were determined at different gamma doses using the Chens glow peak shape method and the results are discussed in detail.  相似文献   

20.
ZnS:Cu nanophosphors were prepared by wet chemical methods and characterized by X-ray diffraction (XRD). The typical morphologies of the nanophosphors were investigated by scanning electron microscopy (SEM). The thermoluminescence (TL) properties of inorganically and organically passivated ZnS:Cu nanophosphors were investigated after γ-irradiation using a 60Co source at room temperature. The TL glow curve of capped ZnS:Cu showed variation in TL peak and intensity as the capping agent was changed. Amongst the synthesized samples the TL glow curve of SiO2 capped ZnS:Cu showed the highest TL intensity. It has been found that TL response of SiO2 capped ZnS:Cu is linear in the range 10-550 Gy. A discussion of the obtained results is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号