首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Polymer electrolyte based on PVA doped with different concentrations of NH4Br has been prepared by solution casting technique. The complexation of the prepared polymer electrolytes has been studied using X-ray diffraction (XRD) and Fourier transform infra red (FTIR) spectroscopy. The maximum ionic conductivity (5.7×10−4 S cm−1) has been obtained for 25 mol% NH4Br-doped PVA polymer electrolyte. The temperature dependence of ionic conductivity of the prepared polymer electrolytes obeys Arrhenius law. The ionic transference number of mobile ions has been estimated by dc polarization method and the results reveal that the conducting species are predominantly ions. The dielectric behavior of the polymer electrolytes has been analyzed using dielectric permittivity and electric modulus spectra.  相似文献   

2.
The lithium ion conducting solid polymer electrolytes (SPE) based on PVAc-LiClO4 of various compositions were prepared by solution casting technique. Structure and surface morphology characterization were studied by X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) measurements, respectively. Thermal and conductivity behavior of polymer-salt complexes were studied by employing differential scanning calorimetry (DSC) and ac impedance measurements, respectively. XRD and SEM analyses indicate the amorphous nature of the polymer-salt complexes. DSC measurements show decrease in Tg with the increase in LiClO4 concentrations. The bulk conductivity of the PVAc:LiClO4 polymer electrolytes was found to vary between 7.6×10−7 and 6.2×10−5 S cm−1 at 303 K with the increase in salt concentration. The temperature dependence of the polymer electrolyte complexes appear to obey Arrhenius law.  相似文献   

3.
Solid polymer electrolytes based on polyacrylonitrile (PAN) doped with ammonium thiocyanate (NH4SCN) in different molar ratios of polymer and salt have been prepared by solution-casting method using DMF as solvent. The increase in amorphous nature of the polymer electrolytes has been confirmed by XRD analysis. A shift in glass transition temperature (T g) of the PAN?:?NH4SCN electrolytes has been observed from the DSC thermograms which indicates the interaction between the polymer and the salt. From the AC impedance spectroscopic analysis, the ionic conductivity has been found to increase with increasing salt concentration up to 30 mol% of NH4SCN beyond which the conductivity decreases and the highest ambient temperature conductivity has been found to be 5.79?×?10?3 S cm?1. The temperature-dependent conductivity of the polymer electrolyte follows an Arrhenius relationship which shows hopping of ions in the polymer matrix. The dielectric loss curves for the sample 70 mol% PAN?:?30 mol% NH4SCN reveal the low-frequency β-relaxation peak pronounced at high temperature, and it may be caused by side group dipoles. The ionic transference number of polymer electrolyte has been estimated by Wagner’s polarization method, and the results reveal that the conductivity species are predominantly ions.  相似文献   

4.
Nithya  S.  Selvasekarapandian  S.  Premalatha  M. 《Ionics》2017,23(10):2767-2774

Solid polymer electrolytes based on polyacrylonitrile (PAN) doped with ammonium iodide (NH4I) have been prepared by solution casting method with different molar ratios of polymer and salt using DMF as solvent. The XRD pattern confirms the dissociation of salt. The FTIR analysis confirms the complex formation between the polymer and the salt. A shift in glass transition temperature (T g ) of the PAN/NH4I electrolytes has been observed from the DSC thermograms, which indicates the interaction between the polymer and the salt. The conductivity analysis shows that the polymer electrolyte with 20 mol% NH4I has the highest conductivity equal to 1.106 × 10−3 S cm−1 at room temperature. The activation energy (E a ) has been found to be low for the highest conductivity sample. The dielectric permittivity (ε*) and modulus (M*) have been calculated from the alternating current (AC) impedance spectroscopy in the frequency range 42 Hz–1 MHz. The DC polarization measurement shows that the conductivity is mainly due to ions.

  相似文献   

5.
Karthikeyan  S.  Selvasekarapandian  S.  Premalatha  M.  Monisha  S.  Boopathi  G.  Aristatil  G.  Arun  A.  Madeswaran  S. 《Ionics》2017,23(10):2775-2780

The essential part of electrochemical devices, such as fuel cells and batteries, is the polymer electrolyte with good mechanical, thermal, and chemical stability. The search for a new proton-conducting membrane with easy processability, non-toxic, and low-cost has been growing rapidly. The bio-based polymer electrolytes are now receiving much attention due to the green environment. Among the commercially available biopolymers, iota-Carrageenan (I-Carrageenan) is one of the biopolymer with good film-forming nature and with good mechanical stability. I-Carrageenan-based biopolymer membranes doped with ammonium bromide (NH4Br) have been prepared using solution-casting technique, and distilled water is used as a solvent. The prepared I-Carrageenan-based biopolymer membranes have been characterized using FTIR, XRD, and AC impedance techniques. The complexation between the polymer and salt has been revealed by FTIR. The increase in the amorphous nature of the film due to the addition of salt has been confirmed by XRD. From AC impedance technique, the conductivity of pure I-Carrageenan has been found to be 1.46 × 10−5 S/cm. The addition of different wt% of NH4Br increases the conductivity and reaches the highest value of 1.08 × 10−3 S/cm for 20% NH4Br, and the conductivity decreases on further addition of NH4Br due to the formation of ion aggregates.

  相似文献   

6.
Polymer-salt complex with poly(vinyl chloride) (PVC) and poly(acrylonitrile) (PAN) as host polymers blended with lithium bis-(trifluoro methanesulfonyl)imide, LiTFSI [LiN(CF3SO2)2] as dopant salt were prepared in the form of thin film. Fourier transform infrared (FTIR) studies show the evidence of the complexation between PVC, PAN and LiTFSI. Ionic conductivity studies reveal that polymer electrolyte with 30 wt.% LiTFSI has the highest ionic conductivity of 4.39 × 10− 4 S/cm at room temperature. The polymer electrolytes are also found to be stable up to 315 °C before they decompose. Thermal stability of the polymer electrolytes was also found to increase with increase in salt content. This was proven through thermogravimetric studies.  相似文献   

7.
Gel polymer electrolytes (GPE) obtained by immobilizing a solution of zinc triflate (ZnTr) in an ionic liquid, namely 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [emim][Tf2N] within a biodegradable polymeric matrix of poly-ε-caprolactone (PCL) were prepared by a simple solvent cast technique for different concentrations of the ionic liquid. The electrolyte with the composition 75 wt% PCL: 25 wt% ZnTr+100 wt% [emim][Tf2N] showed the highest ionic conductivity of 1.1×10−4 S cm−1 at 25 °C and favored by the rich amorphous phase of the GPE as confirmed from room temperature X-ray diffraction analysis (XRD). The morphology of the GPE was examined using scanning electron microscopy (SEM) which revealed the homogeneity of the prepared GPE system. The temperature dependence of electrical conductivity of the GPE followed the Arrhenius behavior. The Zn2+ ionic transport number has been determined to be ~0.62 which denotes the predominant contribution of zinc ion towards total ionic conductivity. The electrochemical stability window of GPE is found to be 2.5 V with a thermal stability upto 200 °C. This eco-friendly and safe electrolyte may be used to fabricate compostable batteries, in future, with a suitable selection of other components of the battery system.  相似文献   

8.
The proton-conducting polymer electrolytes based on poly (N-vinylpyrrolidone) (PVP), doped with ammonium chloride (NH4Cl) in different molar ratios, have been prepared by solution-casting technique using distilled water as solvent. The increase in amorphous nature of the polymer electrolytes has been confirmed by XRD analysis. The FTIR analysis confirms the complex formation of the polymer with the salt. A shift in glass transition temperature (T g) of the PVP/NH4Cl electrolytes has been observed from the DSC thermograms which indicates the interaction between the polymer and the salt. From the AC impedance spectroscopic analysis, the ionic conductivity of 15?mol% NH4Cl-doped PVP polymer complex has been found to be maximum of the order of 2.51?×?10?5?Scm?1 at room temperature. The dependence of T g and conductivity upon salt concentration has been discussed. The linear variation of the proton conductivity of the polymer electrolytes with increasing temperature suggests the Arrhenius type thermally activated process. The activation energy calculated from the Arrhenius plot for all compositions of PVP doped with NH4Cl has been found to vary from 0.49 to 0.92?eV. The dielectric loss curves for the sample 85?mol% PVP:15?mol% NH4Cl reveal the low-frequency ?? relaxation peak pronounced at high temperature, and it may be caused by side group dipoles. The relaxation parameters of the electrolytes have been obtained by the study of Tan?? as a function of frequency.  相似文献   

9.
Solid polymer electrolytes have attracted considerable attention due to their wide variety of electrochemical device applications. The present paper is focused on the effect of plasticizer to study the structural, electrical and dielectric properties of PVA-H3PO4 complex polymer electrolytes. XRD results show that the crystallinity decreases due to addition of plasticizer up to particular amount of polyethylene glycol (PEG) and thereafter it increases. Consequently, there is an enhancement in the amorphicity of the samples responsible for process of ion transport. This characteristic behavior can be verified by the analysis of the differential scanning calorimetry results. FTIR spectroscopy has been used to characterize the structure of polymer and confirms the complexation of plasticizer with host polymeric matrix. Electrical and dielectric properties have been studied for different wt% of plasticizer and their variations have been observed. The addition of PEG has significantly improved the ionic conductivity. The optimum ionic conductivity value of the plasticized polymer electrolyte film of 30 wt% PEG has been achieved to be of the order of 10−4 S cm−1 at room temperature and corresponding ionic transference number is 0.98. The minimum activation energy is found to be 0.25 eV for optimum conductivity condition.  相似文献   

10.
Materials and ion transport property characterization in Solid Polymer Electrolyte (SPE) membranes: (1 − x) PEO: x KIO3, where x = 0, 10, 20, 30, 40, 50 wt.%, have been studied. SPE films have been prepared following two casting techniques: a novel hot-press (extrusion) and the traditional solution cast. Hot-press technique is a completely dry/solvent free/rapid/inexpensive procedure as compared to solution cast method and has recently been receiving wider acceptability to cast membranes of ion conducting polymeric electrolytes.‘Log σ − x’ study revealed σ-maxima at salt concentration x = 30 wt.% for SPE film prepared by both the methods. However, hot-pressed SPE film: 70 PEO: 30 KIO3 exhibited relatively higher room temperature conductivity (σ ∼ 4.40 × 10− 7 S cm− 1) than that of the solution casted film. This has been referred to as Optimum Conducting Composition (OCC) SPE film. Materials characterization in OCC SPE film has been done by XRD, FTIR and DSC techniques. These studies confirmed the complexation of salt in the polymeric host. Some basic ionic parameters viz. conductivity (σ), ionic mobility (μ), mobile ion concentration (n), ionic transference number (tion) have been determined using different experimental procedures to understand the ion transport behaviour in OCC SPE material. The temperature dependent conductivity measurement has also been carried out and the activation energy (Ea) has been computed from the linear least square fitting of ‘log σ − 1 / T’ Arrhenius plot.  相似文献   

11.
Transparent conducting thin films of fluorine-doped tin oxide (FTO) have been deposited onto the preheated glass substrates of different thickness by spray pyrolysis process using SnCl4·5H2O and NH4F precursors. Substrate thickness is varied from 1 to 6 mm. The films are grown using mixed solvent with propane-2-ol as organic solvent and distilled water at optimized substrate temperature of 475 °C. Films of thickness up to 1525 nm are grown by a fine spray of the source solution using compressed air as a carrier gas. The films have been characterized by the techniques such as X-ray diffraction, optical absorption, van der Pauw technique, and Hall effect. The as-deposited films are preferentially oriented along the (2 0 0) plane and are of polycrystalline SnO2 with a tetragonal crystal structure having the texture coefficient of 6.19 for the films deposited on 4 mm thick substrate. The lattice parameter values remain unchanged with the substrate thickness. The grain size varies between 38 and 48 nm. The films exhibit moderate optical transmission up to 70% at 550 nm. The figure of merit (φ) varies from 1.36×10−4 to 1.93×10−3 Ω−1. The films are heavily doped, therefore degenerate and exhibit n-type electrical conductivity. The lowest sheet resistance (Rs) of 7.5 Ω is obtained for a typical sample deposited on 4 mm thick substrate. The resistivity (ρ) and carrier concentration (nD) vary over 8.38×10−4 to 2.95×10−3 Ω cm and 4.03×1020 to 2.69×1021 cm−3, respectively.  相似文献   

12.
Heat capacities of the electron acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) and its radical-ion salt NH4-TCNQ have been measured at temperatures in the 12-350 K range by adiabatic calorimetry. A λ-type heat capacity anomaly arising from a spin-Peierls (SP) transition was found at 301.3 K in NH4-TCNQ. The enthalpy and entropy of transition are ΔtrsH=(667±7) J mol−1 and ΔtrsS=(2.19±0.02) J K−1 mol−1, respectively. The SP transition is characterized by a cooperative coupling between the spin and the phonon systems. By assuming a uniform one-dimensional antiferromagnetic (AF) Heisenberg chains consisting of quantum spin (S=1/2) in the high-temperature phase and an alternating AF nonuniform chains in the low-temperature phase, we estimated the magnetic contribution to the entropy as ΔtrsSmag=0.61 J K−1 mol−1 and the lattice contribution as ΔtrsSlat=1.58 J K−1 mol−1. Although the total magnetic entropy expected for the present compound is R ln 2 (=5.76 J K−1 mol−1), a majority of the magnetic entropy (∼4.6 J K−1 mol−1) persists in the high-temperature phase as a short-range-order effect. The present thermodynamic investigation quantitatively revealed the roles played by the spin and the phonon at the SP transition. Standard thermodynamic functions of both compounds have also been determined.  相似文献   

13.
The polyethylene oxide (PEO) based lithium ion conducting polymer electrolytes complexed with lithium trifluoromethanesulfonate (LiCF3SO3 or LiTf) plasticized with an ionic liquid 1-ethyl 3-methyl imidazolium trifluoromethanesulfonate (EMITf) have been reported. Morphological, spectroscopic, thermal and electrochemical investigations demonstrate promising characteristics of the polymer films, suitable as electrolyte in various energy storage/conversion devices. Significant structural changes have been observed in the polymer electrolyte due to the ionic liquid addition, investigated by X-ray diffraction (XRD) and optical microscopy. The ion-polymer interaction, particularly the interaction of imidazolium cation with PEO chains, has been evidenced by IR and Raman spectroscopic studies. The optimized composition of the polymer electrolyte i.e. PEO25.LiTf + 40 wt.% EMITf offer room temperature ionic conductivity of ~ 3 × 10− 4 S cm− 1 with wide electrochemical stability window and excellent thermal stability. The ‘σ versus 1/T’ curves show apparent Arrhenius behavior below and above melting temperature. The ionic conductivity has been observed due to Li+ ions, as confirmed from 7Li-NMR studies, though the component ions of ionic liquid and anions also contribute significantly to the overall conductivity.  相似文献   

14.
The role of inorganic ceramic fillers namely nanosized Al2O3 (15-25 nm) and TiO2 (10-14 nm) and ferroelectric filler SrBi4Ti4O15 (SBT CIT) (0.5 μm) synthesized by citrate gel technique (CIT) on the ionic conductivity and electrochemical properties of polymer blend 15 wt% PMMA+PEO8:LiClO4+2 wt% EC/PC electrolytes were investigated. Enhancement in conductivity was obtained with a maximum of 0.72×10−5 S cm−1 at 21 °C for 2 wt% of SrBi4Ti4O15 (SBT CIT) composite polymer electrolyte. The lithium-ion transport number and the electrochemical stability of the composite polymer electrolytes at ambient temperature were analyzed. An enhancement in electrochemical stability was observed for polymer composites containing 2 wt% of SrBi4Ti4O15 (SBT CIT) as fillers.  相似文献   

15.
Thin films of blend polymer electrolytes comprising poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) complexed with ammonium thiocyanate (NH4SCN) salt in different compositions have been prepared by solution casting technique using distilled water as solvent. The prepared films have been investigated by different experimental techniques. The complexation of these films has been studied by FTIR spectroscopy. The increase in amorphousness of the films with increase in NH4SCN content has been confirmed by XRD analysis. The addition of ammonium thiocyanate salt to PVA-PVP polymer blend shows a shift in Tg of the blend. The effect of salt concentration and temperature on the ionic conductivity of the polymer blend films has been analyzed using AC impedance spectroscopy. The maximum conductivity of 6.85 × 10?4 S cm?1 at room temperature has been observed for the blend with 50 mol% PVA-50 mol% PVP complexed with 40 mol% NH4SCN. The activation energy has been found to be minimum (0.24 eV) for this sample. Wagner’s polarization technique shows that the charge transport in these blend films is predominantly due to ions. Using the highest conductivity blend polymer electrolyte, a proton battery has been fabricated and its discharge characteristics have been studied.  相似文献   

16.
Proton-conducting polymer electrolytes based on biopolymer, agar-agar as the polymer host, ammonium bromide (NH4Br) as the salt and ethylene carbonate (EC) as the plasticizer have been prepared by solution casting technique with dimethylformamide as solvent. Addition of NH4Br and EC with the biopolymer resulted in an increase in the ionic conductivity of polymer electrolyte. EC was added to increase the degree of salt dissociation and also ionic mobility. The highest ionic conductivity achieved at room temperature was for 50 wt% agar/50 wt% NH4Br/0.3% EC with the conductivity 3.73?×?10?4 S cm?1. The conductivity of the polymer electrolyte increases with the increase in amount of plasticizer. The frequency-dependent conductivity, dielectric permittivity (ε′) and modulus (M′) studies were carried out.  相似文献   

17.
New composite polymer electrolytes (CPE) have been prepared by a solution-casting technique, using polyethylene oxide, lithium hexafluorate (LiPF6) as the doping salt, ethylene carbonate (EC) as the plasticizer and amorphous carbon nanotubes (αCNTs) as the filler. The crystallinity and ionic conductivity of the CPE are examined. Differential scanning calorimetry shows a decrease in melting temperature and crystallinity upon the addition of LiPF6, EC and αCNTs to the polymer electrolyte system. The addition of salt increases the conductivity up to 10−5 S cm−1. The incorporation of EC and αCNTs into the salted polymer shows a significant conductivity increase of 10−4 and 10−3 S cm−1. The complexation process is examined using Fourier transform infrared spectroscopy. The Vogel-Tamman-Fulcher (VTF) plots suggest that the temperature dependence of conductivity is a thermally activated process.  相似文献   

18.
The mixed electronic-ionic conduction in 0.5[xAg2O-(1−x)V2O5]-0.5TeO2 glasses with x=0.1-0.8 has been investigated over a wide temperature range (70-425 K). The mechanism of dc conductivity changes from predominantly electronic to ionic within the 30?mol% Ag2O?40 range; it is correlated with the underlying change in glass structure. The temperature dependence of electronic conductivity has been analyzed quantitatively to determine the applicability of various models of conduction in amorphous semiconducting glasses. At high temperature, T>θD/2 (where θD is the Debye temperature) the electronic dc conductivity is due to non-adiabatic small polaron hopping of electrons for 0.1?x?0.5. The density of states at Fermi level is estimated to be N(EF)≈1019-1020 eV−1 cm−3. The carrier density is of the order of 1019 cm−3, with mobility ≈2.3×10−7-8.6×10−9 cm2 V−1 s−1 at 300 K. The electronic dc conductivity within the whole range of temperature is best described in terms of Triberis-Friedman percolation model. For 0.6?x?0.8, the predominantly ionic dc conductivity is described well by the Anderson-Stuart model.  相似文献   

19.
Poly (acrylonitrile) (PAN) and ammonium chloride (NH4Cl)-based proton conducting polymer electrolytes with different compositions have been prepared by solution casting technique. The amorphous nature of the polymer electrolytes has been confirmed by XRD analysis. The FTIR analysis confirms the complex formation of the host polymer (PAN) with the salt (NH4Cl). DSC measurements show a decrease in Tg with the increase in salt concentration. The conductivity analysis shows that the 25 mol% ammonium chloride doped polymer electrolyte has a maximum ionic conductivity, and it has been found to be 6.4 × 10?3 Scm?1, at room temperature. The temperature dependence of conductivity of the polymer electrolyte complexes appears to obey the Arrhenius nature. The activation energy (Ea = 0.23 eV) has been found to be low for 25 mol% salt doped polymer electrolyte. The dielectric behavior has been analyzed using dielectric permittivity (ε*), and the relaxation frequency (τ) has been calculated from the loss tangent spectra (tan δ). Using this maximum ionic conducting polymer electrolyte, the primary proton conducting battery with configuration Zn + ZnSO4·7H2O/75 PAN:25 NH4Cl/PbO2 + V2O5 has been fabricated and their discharge characteristics have been studied.  相似文献   

20.
Photoluminescence of a soluble polypyrrole based on N-vinylpyrrole   总被引:1,自引:0,他引:1  
Photoluminescence of a novel polypyrrole based on N-vinylpyrrole was systematically observed in organic solutions. The polymer, which has a unique molecular structure, exhibited good photoluminescence in organic solutions. The emission peak of the polymer exhibited one strong green emission band at around 510 nm in common organic solutions. The maximum fluorescence quantum yield of the polymer was found to be 0.16 in NMP solution with fluorescein as standard. At the same concentration, the photoluminescence intensity increased in the order of CHCl3, THF, DMSO, CH2Cl2 and NMP. The photoluminescence spectrum had a slight red shift as the polarity of the solvents increased. The photoluminescence intensity also increased with the polarity of the solvent, except DMSO. This is because of its hygroscopicity in air and its viscosity. In THF solutions, the photoluminescence intensity increased until the concentration reached a certain weight percent (3.0×10−2 wt.%) and then decreased with higher concentrations. This was most likely due to quenching in the aggregate phase. Furthermore, iron ion was a quencher in the DMSO solution. In a mixed solvent system of DMSO and water, water showed a typical quenching effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号