首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
An experiment is described in which an electromagnetic wave (extraordinary mode) is propagated across a magnetized plasma and second harmonic generation is detected. The generation of the plasma and the second harmonic wave is associated with resonant conditions of electron cyclotron resonance and upper hybrid resonance. By adjusting the intensity of axial magnetic field, the second harmonic generation can be made solely due to the electron cyclotron resonance, the upper hybrid resonance or both. The experiment is qualitatively in agreement with previous similar experiments and can be explained in terms of the spatial variations of the magnetic field intensity and the electron number density. A technique for diagnosing peak number density is developed from the observed second harmonic power characteristics.  相似文献   

2.
R P Patel  R P Singh 《Pramana》2001,56(5):605-613
VLF emissions such as hiss, chorus, oscillating tones, hiss-triggered chorus and whistler triggered emissions have been observed at low latitude Indian stations. In this paper we present dynamic spectra of these emissions and discuss their various observed features. It is argued that most of the emissions are generated during Doppler shifted cyclotron resonance interaction between the whistler mode wave and counter streaming energetic electrons. Resonance energy of the participating electron and interaction length are evaluated to explain the generation mechanism of some of these emissions observed at Indian stations.  相似文献   

3.
A. K. Singh  S. B. Singh  R. P. Singh 《Pramana》2005,65(6):1109-1114
A new type of discrete VLF emissions recorded at the low-latitude ground station Varanasi (geomag. lat. 14°55′ N, geomag. long. 154°E;L = 1.07) during the strong magnetic activity on 29–30 April 1990 have been reported. A generation mechanism for various temporal and spectral features of discrete VLF emissions recorded at Varanasi is presented on the basis of cyclotron resonance interaction between whistler mode wave and energetic electrons ejected by substorm electric fields. An attempt is also made to determine parallel energy and wave growth relevant to the generation process of discrete VLF emissions. Finally, our results are discussed with other published works  相似文献   

4.
The field of radiation emission from electron beams is reviewed with special reference to work related to free-electron lasers. Different schemes of interaction in periodic structures, electromagnetic slow-wave structures, and in transverse confining force are distinguished. Various effects and devices such as traveling wave amplifiers, Smith-Purcell radiators, Cerenkov and bremsstrahlung-free electron lasers, cyclotron resonance masers, coherent bremsstrahlung and channeling radiation are discussed and the differences and relations among them are explained. A simple comprehensive model is developed to describe electron-beam interaction with an electromagnetic wave in periodic electromagnetic structures. The model is general enough to describe both collective and single-electron modes of interaction and quantum mechanical, classical and Fermi degenerate regimes. Simplified expressions are developed for the gain by stimulated emission of radiation and for gain conditions of the Smith-Purcell-Cerenkov type free-electron lasers under conditions of very thin electron beams and infinite interaction length. This research is supported by the Air Force Office of Scientific Research under contract AFOSR-76-2933  相似文献   

5.
为了从理论上深入分析新型无衍射光束艾里光束在有限能量条件下的远场传播特性,首先,从决定光波在自由空间传播的一维旁轴波动方程入手,采用傅里叶分析法,结合艾里函数的特殊性质,并利用经过指数衰减的有限能量初始条件,完整给出了有限能量条件下用于精确描述一维艾里光束在自由空间传播特性的波动方程解析解.然后,利用所得到解析解分别对一维和二维艾里光束在自由空间的传播特性进行了研究,重点分析了不同参量条件对艾里光束进行无衍射传播和横向自加速的影响.研究表明:当任意横向尺度为100μm,衰减系数为0.03、0.05、0.07、0.1、0.2时,二维艾里光束无衍射传播距离分别为1 014、624、455、338、193mm;当横向尺度保持不变时,衰减系数越小,艾里光束保持无衍射传播的距离越大;当衰减系数保持不变时,横向尺度越小,艾里光束横向自加速越大.所采用的研究方法也可用于研究艾里光束在介质中的传播特性.  相似文献   

6.
The shock wave formation in focused beams produced by spherical hydroacoustic transducers with different apertures and an operating frequency of 3 MHz, as well as in weakly divergent high-intensity beams of the same frequency, is studied experimentally. The profiles of the received signals are analyzed for different receiving points in the acoustic beam and for different combinations of nonlinear and diffraction effects. It is found that the distortion of the initial waveform (i.e., of the compression and rarefaction phases) is asymmetric. The asymmetry of the wave profile in a focused beam is more pronounced than that in a quasi-plane wave while the asymmetric distortion of the high-frequency carrier causes an asymmetric distortion of the pulse envelope. The angular characteristics of the difference-frequency waves produced by parametric sound radiators are compared using both focused and weakly divergent beams of pump waves. The experiments also show that the appearance of a bubbly phase screen in the region before the point of the shock formation either shifts this point to greater distances or makes the discontinuity formation impossible. Results illustrating the changes that occur in the shock wave characteristics when the bubbly phase screen is placed in the region of the fully developed shock are presented.  相似文献   

7.
A theory for a two-stream free-electron laser (FEL) with an electromagnetic wiggler (EMW) and axial guide magnetic field is developed. In the analysis, the effects of self-fields are taken into account. The growth rate is derived. The characteristics of the growth rate are studied numerically. The dependence of the normalized wave number, which corresponds to the maximum growth rate, on the cyclotron frequency is presented. The comparisons between the normalized maximum growth rate and its corresponding wave number normalized by employing the axial magnetic field, for the cases with and without self-fields in the two-stream FEL are studied numerically.  相似文献   

8.
9.
The following topics were dealt with: high power microwave generation; pulse shortening; fast wave devices; gyrotron oscillators; gyrotron amplifiers; free electron lasers; free electron masers; cyclotron resonance masers; slow wave devices; backward wave oscillators; plasma-filled devices; crossed-field devices; magnetrons; MILOs; devices based on transit time effects; virtual cathode devices; klystrons; traveling wave tubes; electron beam formation and oscillations, impulse sources; computational and calculational techniques, experimental techniques, applications  相似文献   

10.
Wave propagation in single-walled carbon nanotubes (SWCNTs) conveying fluids and placed in multi-physical fields (including magnetic and temperature fields) is studied in this paper. The nanotubes are modelled as Timoshenko beams. Based on the nonlocal beam theory, the governing equations of motion are derived using Hamilton's principle, and then solved by Galerkin approach, leading to two second-order ordinary differential equations (ODEs). Numerical simulations are carried out to verify the analytical model proposed in the present study, and determine the influences of the nonlocal parameter, the fluid velocity and flow density, the temperature and magnetic field flux change, and the surrounding elastic medium on the wave behaviour of SWCNTs. The results show that the nonlocal parameter has a considerable influence on dynamic behaviour of the nanotube and the fluid flow inside it. The results also show that the magnetic and temperature fields play an important role on the wave propagation characteristics of SWCNTs.  相似文献   

11.
We show that using the approximation of fixed intensity analytical formulae, describing the process of induced phase modulation for the beams involved in second-order nonlinear optical processes can be derived. Expressions that allow the optimization of the phase shifts experienced by the fundamental and generated waves are presented for nonlinear quadratic processes, second-harmonic generation and sum-frequency mixing. In the case of seeding at the generated wavelength, the phase shift of the fundamental wave is due to two interactions: (i) a cubic one, based on coupled second-order processes (cascade cubic nonlinearity) and (ii) single quadratic interaction with participation of the seeding wave. By comparison with the exact numerical solution, we defined the input parameters of the beams for which this analytical approach is valid. It is shown that phase shifts exceeding /2 can be correctly predicted using the expressions obtained.  相似文献   

12.
Cyclotron wave amplifiers at the harmonics of the electron cyclotron frequency are investigated. Since the waves on the beam are electrostatic, harmonics are strongly excited in nonrelativistic beams if they are rotating rather than filamentary. These modes at the harmonics can couple to input Cuccia couplers, and pump fields which drive parametric amplification, in very much the same way as they do on filamentary beams at the cyclotron frequency. Harmonic cyclotron wave amplifiers have the possibility of giving rise to a new class of devices at millimeter wave frequencies  相似文献   

13.
The analytical expressions of converted wave power for difference frequency generation (DFG), cascaded second-harmonic generation and difference frequency generation (cSHG/DFG) processes have been obtained under the non-depletion approximation in lossy waveguides. It is shown that the analytical results and the numerical simulation with depletion agree very well for lossy waveguides. Employing the analytical solutions, the formulas of optimized waveguide lengths in lossy waveguides are obtained for DFG and cSHG/DFG processes. After designing an AlGaAs quasi-phase-matched ridge waveguide, we investigate and compare the characteristics of the second-order nonlinear effects with and without waveguide loss, such as conversion efficiency, conversion bandwidth, pump wavelength tolerance and temperature stability in detail.  相似文献   

14.
A right-hand circularly polarized (RHCP) electron cyclotron wave is launched along the axis of a steady-state magnetically confined plasma column. Detailed measurements of the spatial variation of electron temperature, density, plasma potential, and wave amplitude about the resonance zone are presented. In particular, data are presented where the temperature increase due to electron cyclotron resonance heating (ECRH) is strongly localized near the resonance position. A numerical wave heating model has been developed for electrons in a magnetic mirror and is found to be in qualitative agreement with observations.  相似文献   

15.
A linear theory of the cyclotron parametric instability in systems which are classical analogues of quantum lasers without inversion is developed. The cyclotron interaction of different types of modulated electron beams with a bichromatic field, produced by waves propagating at an angle with respect to a constant magnetic field, is investigated. It is shown that simultaneous amplification of two parametrically coupled modes with different frequencies and positive energy is possible in this system with modulation of the active and reactive components of the susceptibility of an electronic ensemble. The results obtained are important from the standpoint of the general theory of radiation processes in electron beams and plasma and for the advancement of microwave electronics.  相似文献   

16.
The propagation of waves over periodically corrugated surfaces and their excitation by relativistic electron beams are investigated within the framework of a quasi-optical approach. The dispersion equation is derived for normal waves under the assumption of a small (in the scale of the period and wavelength) corrugation depth, based on which two limiting cases are identified. In the first limiting case, the wave frequency is far from the Bragg resonance, and the propagation of waves can be described in terms of the impedance approximation, in which the fundamental spatial harmonic slows down. In the second limiting case realized at frequencies close to the Bragg resonance, the field is represented as two counterpropagating quasi-optical wave beams coupled on a corrugated surface and forming a normal surface wave. When interacting with an electron beam, convective instability, which can be used to realize amplifier regimes, corresponds to the first case, and absolute one, which is applied in surface-wave oscillators, corresponds to the second case. The developed theory is used to determine basic characteristics of amplifier and oscillator schemes: the growth rates, the energy exchange efficiency, and the formation of a self-consistent spatial structure of the radiated field. The practical realization of relativistic submillimeter amplifiers and surface-wave oscillators is shown to hold promise.  相似文献   

17.
A theory of spiral structure formation has been formulated to show that spiral structures are rather basic entities in magnetized rotating plasmas subjected to various types of instabilities such as collisional drift wave instability, flute mode instability due to centrifugal force, and Kelvin-Helmhotz instability. The characteristic features of spiral structures observed experimentally in electron cyclotron resonance plasmas are reproduced by our theory.  相似文献   

18.
A theory for static and dynamic transport of a two-dimensional electron gas in GaAs-AlGaAs heterostructures at temperature zero is presented. Charged impurities, separated from the electron gas by a spacer layer, are considered as the dominant scattering mechanism. Finite extension of the wave function of the two-dimensional electron gas is taken into account. Multiple scattering effects are included and are shown to lead to a metal insulator transition at low electron densities. Due to plasmon dynamics the scattering is strongly frequency dependent, and this dissipative process determines the width of the cyclotron resonance. The corresponding reactive effect determines the shift of the cyclotron resonance. It is shown that a correlation between line width maximum and zero frequency shift of the cyclotron mode exists, in agreement with experimental results.  相似文献   

19.
The effect of plasma loading in the field structure and dispersive characteristics of slow cyclotron waves propagated in electron beams is studied. A requirement is established for the maximum permissible plasma concentration at which a slow cyclotron wave can be used for collective ion acceleration. The degree of vacuum required for operation of an autoresonant accelerator is estimated.Moscow Radio-Engineering Institute, Academy of Sciences of the USSR. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 34, No. 8, pp. 897–907, August, 1991.  相似文献   

20.
Broadband microwave propagation and absorption processes and backscatter from objects immersed in a magnetized, finite, warm plasma column is addressed. In particular, the propagation, absorption, and backscatter of electron cyclotron waves are measured and compared with bounded vacuum hot plasma wave propagation, absorption, and ray tracing theory. The nonreciprocal nature of the transmission and absorption in an anisotropic plasma is measured. A homodyne technique which isolates the scattering from a single object in the plasma from the scattering from all other objects in the plasma and the walls of the containment device is developed and utilized. The range of absorption frequencies and nonreciprocity of the transmission signal are shown to be well correlated with wave trajectories in the associated regions of the Clemmow-Mullaly-Allis (CMA) diagram. It is shown that quasi-parallel propagation of electron cyclotron waves near resonance is present and that the transverse effects of wavenumber on propagation in the cylindrical plasma are small  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号