首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The extinct woolly rhinoceros Coelodonta antiquitatis is a prominent member of the Mammuthus-Coelodonta faunal complex, but its biology is poorly known, partly because very few specimens with well-preserved soft tissues have been discovered to date. However, the permafrost-preserved horns of the woolly rhinoceros are recording structures which contain isotopic records of the diet, environmental conditions and physiological status of the animal during most of its life. In this study we report the first data on the pattern of carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) isotopic composition along the nasal horn of woolly rhinoceros. We found systematic variations in δ(13)C and δ(15)N values associated with morphologically expressed transverse banding of the horn. The comparative analysis of isotopic variation in keratinous tissues of extant and extinct herbivores suggests that the oscillation in isotopic composition of the horn was induced by seasonal changes in the diet. Although the compiled evidence is in part contradictory, we suggest that more positive δ(13)C and δ(15)N values associated with dark-colored and less dense zones of the horn indicate a summer diet. More dense and light-colored zones of the horn have lower δ(13)C and δ(15)N values possibly indicating a larger proportion of woody and shrub vegetation in the winter diet. The validity of these conclusions has to be proven in further investigations, but our data underline the potential of isotopic analysis for studies on diet and habitat use by extinct members of Pleistocene fauna.  相似文献   

2.
The carbon and nitrogen stable ratios of royal jelly (RJ) samples from various origins are determined using an elemental analyser linked online to an isotope ratio mass spectrometer to evaluate authenticity and adulteration. The (13)C/(12)C and (15)N/(14)N stable isotope ratios are measured in more than 500 RJs (domestic, imported and derived from feeding experiments) in order to obtain isotopic measurements that take into account seasonal, botanical and geographical effects. Authenticity intervals are established for traditional beekeeping practices, without feeding, in the range -22.48 to -27.90‰ for δ(13)C. For these samples, the δ(15)N values range from -1.58 to 7.98‰, depending on the plant sources of pollen and nectar. The δ(13)C values of the commercial samples vary from -18.54 to -26.58‰. High δ(13)C values are typical of sugar cane or corn syrups which have distinctive isotopic (13)C signatures because both plants use the C4 photosynthetic cycle, in contrast to most RJs which are derived from C3 plants. These differences in the (13)C-isotopic composition allow the detection of the addition of such sugars. RJs from traditional sources and from industrial production by sugar feeding are thus successfully distinguished.  相似文献   

3.
We have developed a method based on a double labeling with stable isotopes and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) analyses to study amino acid exchange in a symbiotic plant-microbe association. Isotopic precision was studied for 21 standards including 15 amino acid derivatives, three N-protected amino acid methyl esters, three amines and one international standard. High correlations were observed between the δ(13)C and δ(15)N values obtained by GC/C/IRMS and those obtained by an elemental analyzer (EA) coupled to an isotope ratio mass spectrometer (R(2) = 0.9868 and 0.9992, respectively). The mean precision measured was 0.04‰ for δ(13)C and 0.28‰ for δ(15)N (n = 15). This method was applied in vivo to the symbiotic relationship between alfalfa (Medicago sativa L.) and N(2)-fixing bacteria. Plants were simultaneously labeled over 10 days with (13)C-depleted CO(2) ((12)CO(2)), which was assimilated through photosynthesis by leaves, and (15)N(2) fixed via nodules. Subsequently, the C and N isotope compositions (i.e. δ(13)C and δ(15)N) of free amino acids were analyzed in leaves and nodules by GC/C/IRMS. The method revealed the pattern of C and N exchange between leaves and nodules, highlighting that γ-aminobutanoic acid and glycine may represent an important form of C transport from leaves to the nodules. The results confirmed the validity, reliability and accuracy of the method for assessing C and N fluxes between plants and symbiotic bacteria and support the use of this technique in a broad range of metabolic and fluxomic studies.  相似文献   

4.
Stable isotopes are an increasingly important tool in trophic linkage ecological studies. In studies of large marine animals, isotopic sampling is often given secondary priority to sampling for diversity and biomass aspects. Consequently, isotopic samples are frequently collected subsequent to repeated freezing and thawing of animals, and the results of these studies are often based on the assumption that this pre-treatment does not affect the isotopic values. Our study tested this assumption and examined the difference between oven- and freeze-drying on isotopic values and elemental carbon-to-nitrogen (C:N) ratios. The values for δ(15)N and δ(13)C, percentage nitrogen and carbon, and the C:N ratios were determined from the tissues of six marine species, including invertebrates and fish, as (1) fresh samples, (2) samples thawed once, and (3) samples thawed twice. The drying method, thawing treatment and their interaction did significantly affect the δ(15)N and δ(13)C isotope values for all species. Oven-dried samples had slightly higher δ(13)C and δ(15)N values than freeze-dried samples, although not significant in most instances. For most species, oven-drying produced lower carbon and nitrogen percentage than freeze-drying for samples that had been thawed once, but the C:N ratio was unaffected by the drying method. Repeated freezing and thawing did not affect the isotope values, but it did decrease the percentage carbon and nitrogen for both desiccation methods. We recommend drying samples from fresh wherever possible, and careful choice of desiccation method in light of the fact that most lipid models are based on oven-dried samples and oven-drying could cause enrichment of (15)N or (13)C through evaporation of volatile compounds richer in lighter isotopes such as some lipids. Finally, we recommend that further studies on the specific effects of freezing and desiccation on elasmobranchs is needed. Overall we recommend the use of freeze-drying when possible and to use the samples from freshly caught organisms.  相似文献   

5.
The shortage of plant-available nutrients probably constrained prehistoric cereal cropping but there is very little direct evidence relating to the history of ancient manuring. It has been shown that the long-term addition of animal manure elevates the δ(15)N value of soil and of modern crops grown on the soil. We have examined the δ(15)N and δ(13)C values of soil and of the grain and straw fractions of three ancient cereal types grown in unmanured, PK amended and cattle manured plots of the Askov long-term field experiment. Manure increased biomass yields and the δ(15)N values of soil and of grain and straw fractions of the ancient cereal types; differences in δ(15)N between unmanured and PK treatments were insignificant. The offset in straw and grain δ(15)N due to manure averaged 7.9 and 8.8 ‰, respectively, while the soil offset was 1.9 ‰. The soil and biomass δ(13)C values were not affected by nutrient amendments. Grain weights differed among cereal types but increased in the order: unmanured, PK, and animal manure. The grain and straw total-N concentration was generally not affected by manure addition. Our study suggests that long-term application of manure to permanently cultivated sites would have provided a substantial positive effect on cereals grown in early agriculture and will have left a significant N isotopic imprint on soil, grains and straw. We suggest that the use of animal manure can be identified by the (15)N abundance in remains of ancient cereals (e.g. charred grains) from archaeological sites and by growing test plants on freshly exposed palaeosols.  相似文献   

6.
Gas chromatography/combustion/isotope ratio mass spectrometry (GC-C-IRMS) is a highly sensitive approach which allows the analysis of the (13)C/(12)C and (15)N/(14)N isotope composition of amino acids in the range of natural abundance or in slightly (13)C- and (15)N-enriched samples. However, the accuracy of measurements remains a permanent challenge. Here we show the effect of the presence of slightly (15)N-enriched compounds in physiological samples on the accuracy and reproducibility of (15)N-abundances of amino acids within or between analytical runs. We spiked several individual amino acids with the respective (15)N-labelled isotopomer and measured the (15)N/(14)N ratios of other amino acids in the same sample or in the following analytical runs. Intra- and inter-run memory effects can be observed in (15)N/(14)N ratios of amino acids. Sample throughput is reduced when cleaning runs using standard mixtures are required to restore initial conditions after runs of samples with (15)N-enriched analytes. Possible reasons for the observed phenomenon and its implications for work in the lower (15)N-enrichment range (<0.5 APE) are discussed and include different aspects of gas chromatography, derivatisation, and hot catalytic metal surface effects. Results need to be interpreted with caution if complex physiological samples contain (15)N-enriched amino acids beyond 500‰ δ(15)N (~0.18 APE).  相似文献   

7.
The paper shows the variability of stable isotope ratios and mineral composition in tomato and derivatives along the production chain (juice, passata and paste) in order to evaluate the possibility of tracing their geographical origin. The ratios (13)C/(12)C, (15)N/(14)N, (18)O/(16)O, D/H, (34)S/(32)S and the content of Li, Be, B, Na, Mg, Al, P, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Y, Mo, Ag, Cd, Sn, Sb, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Tm, Yb, Ir, Tl, Pb, U and of nitrates, chlorides, sulphates and phosphates were measured by Isotope Ratio Mass Spectrometry, Inductively Coupled Plasma Mass Spectrometry and Ion Chromatography, respectively. The tomato products were from three Italian regions - Piedmont, Emilia Romagna, and Apulia. By applying linear discriminant analysis on 17 of these parameters (Gd, La, Tl, Eu, Cs, Ni, Cr, Co, δ(34)S, δ(15)N, Cd, K, Mg, δ(13)C, Mo, Rb and U) excellent discrimination among products from the three regions was achieved. Irrespective of the processing technology, over 95% of the samples were correctly reclassified in cross-validation into the production site. The use of these parameters will allow the development of analytical control procedures that can be used to check the geographical provenance of Italian tomatoes and products derived from them.  相似文献   

8.
Diffusion of ammonia is a common sample preparation method for the stable isotope analysis of inorganic nitrogen in aqueous solution. Classical diffusion methods usually require 6-12 days of diffusion and often focus on (15)N/(14)N analysis only. More recent studies have discussed whether complete N recovery was necessary for the precise analysis of stable N isotope ratios. In this paper we present a newly revised diffusion technique that allows correct and simultaneous determination of total N and (15)N at% from aqueous solutions and Kjeldahl digests, with N concentrations down to sub-0.5-mg N L(-1) levels, and it is tested under different conditions of (15)N isotope labelling. With the modification described, the diffusion time was reduced to 72 h, while the ratios of measured and expected (15)N at% were greater than 99% and the simultaneous recovery of total N was >95%. Analysis of soil microbial biomass N and its (15)N/(14)N ratio is one of the most important applications of this diffusion technique. An experiment with soil extracts spiked with (15)N-labelled yeast showed that predigestion was necessary to prevent serious N loss during Kjeldahl digestion of aqueous samples (i.e. soil extracts). The whole method of soil microbial biomass N preparation for (15)N/(14)N analysis included chloroform fumigation, predigestion, Kjeldahl digestion and diffusion. An experiment with soil spiked with (15)N-labelled yeast was carried out to evaluate the method. Results showed a highly significant correlation of recovered and added N, with the same recovery rate (0.21) of both total N and (15)N. A k(N) value of 0.25 was obtained based on the data. In conclusion, the diffusion method works for soil extracts and microbial biomass N determination and hence could be useful in many types of soil/water studies.  相似文献   

9.
Stable isotope measurements are an important tool for ecosystem trophic linkage studies. Ideally, fresh samples should be used for isotopic analysis, but in many cases organisms must be preserved and analysed later. In some cases dyes must be used to help distinguish organisms from detritus. Since preservatives and dyes are carbon-based, their addition could influence isotopic readings. This study aims to improve understanding of the effects of sample storage method, dye addition and acidification on the δ(15)N and δ(13)C values of zooplankton (Euphasia frigida and Undinula vulgaris). Zooplankton was collected and preserved by freezing, or by the addition of 5% formalin, 70% ethanol, or 5% formalin with added Phloxine B or Rose Bengal, and stored for 1 month before processing. Samples in 5% formalin and 70% ethanol were also kept and processed after 3 and 9 months to study changes over time. Formalin caused the largest enrichment for δ(13)C and a slight enrichment for δ(15)N, while ethanol produced a slight depletion for δ(13)C, and different effects on δ(15)N depending on the species. In formalin, dyes depleted the δ(13)C values, but had variable effects on δ(15)N, relative to formalin alone. Acidification had no significant effect on δ(15)N or δ(13)C for either species. Long-term storage showed that the effects of the preservatives were species-dependent. Although the effects on δ(15)N varied, a relative enrichment in (13)C of samples occurred with time. This can have important consequences for the understanding of the organic flow within a food web and for trophic studies. .  相似文献   

10.
Stable isotopes are increasingly being used to trace wildlife movements. A fundamental prerequisite of animal isotopic tracking is a good knowledge of spatial isotopic variations in the environment. Few accessible reference maps of the isotopic landscape ("isoscapes") are available for marine predators. Here, we validate for the first time an isotopic gradient for higher trophic levels by using a unique combination of a large number of satellite-tracks and subsequent blood plasma isotopic signatures from a wide-ranging oceanic predator. The plasma δ(13)C and δ(15)N values of wandering albatrosses (n = 45) were highly and positively correlated to the Southern Ocean latitudes at which the satellite-tracked individuals foraged. The well-defined latitudinal baseline carbon isoscapes in the Southern Ocean is thus reflected in the tissue of consumers, but with a positive shift due to the cumulative effect of a slight (13)C-enrichment at each trophic level. The data allowed us to estimate the carbon isotopic position of the main oceanic fronts in the area, and thus to delineate robust isoscapes of the main foraging zones for top predators. The plasma δ(13)C and δ(15)N values were positively and linearly correlated, thus suggesting that latitudinal isoscapes also occur for δ(15)N at the base of the food web in oceanic waters of the Southern Ocean. The combination of device deployments with sampling of relevant tissues for isotopic analysis appears to be a powerful tool for investigating consumers' isoscapes at various spatio-temporal scales.  相似文献   

11.
《Analytical letters》2012,45(16):2620-2634
The aim of this study was to quantify the effects of preservation methods and preservation times on the stable carbon and nitrogen isotope values in the tissues of six mollusk species (Mytilus edulis, Crassostrea gigas, Ruditapes philippinarum, Acanthochiton seulschnochilon, Littorina brevicula, and Rapana venosa). To identify potential preservation effects on δ13C and δ15N values and to examine temporal changes in the effects of preservation, repeated analyses were carried out after 1 day, 5 days, 15 days, 1 month, 3 months, 6 months, and 12 months of preservation. The results showed that drying preservation was the most suitable method for preserving samples, while freezing and chemical preservation significantly affected the stable isotope values compared with those of the controls. The effects of preservatives on the tissues of different mollusk species were statistically significant for both δ13C and δ15N values. Shifts in the δ13C and δ15N values, due to freezing and chemical preservation, were higher in Acanthochiton seulschnochilon, Littorina brevicula, and Rapana venosa than in the other three species. The effects of preservatives on carbon isotope values were variable. In most cases, the shift of the δ13C values from the control samples were less than 1% for those of the treated samples. The δ13C and δ15N data from the preserved samples could thus be used in food web reconstruction studies. Further studies will be necessary, however, in order to elucidate the effects of preservation type and time on other species.  相似文献   

12.
We investigate the effect of acid treatment methods on δ(15)N values from a range of environmental organic materials in the context of the increased application of 'dual-mode' isotope analysis (the simultaneous measurement of δ(13)C and δ(15)N from the same acid-treated sample). Three common methods are compared; (i) untreated samples; (ii) acidification followed by sequential water rinse (rinse method); and (iii) acidification in silver capsules (capsule method). The influence of capsule type (silver and tin) on δ(15)N is also independently assessed (as the capsule and rinse methods combust samples in different capsules; silver and tin, respectively). We find significant differences in δ(15)N values between methods and the precision of any one method varies significantly between sample materials and above the instrument precision (>0.3‰). The δ(15)N values of untreated samples did not produce the most consistent data on all sample materials. In addition, the capsule type appears to influence the measured δ(15)N value of some materials, particularly those combusted only in silver capsules. We also compare the new δ(15)N data with previously published δ(13)C data on the same materials. The response of δ(13)C and δ(15)N within and between methods and sample materials to acidification appears to be relatively disproportionate, which can influence the environmental interpretation of the measured data. In addition, statistical methods used to estimate inorganic nitrogen are shown to be seriously flawed.  相似文献   

13.
This study assesses the effects of the atmospheric nitrogen (N) deposition on the N uptake and the long-term water-use efficiency of two C(3) plants (Agropyron cristatum and Leymus chinensis) and two C(4) plants (Amaranthus retroflexus and Setaria viridis) using N and C stable isotopes. In addition, this study explores the potential correlation between leaf N isotope (δ(15)N) values and leaf C isotope (δ(13)C) values. This experiment shows that the atmospheric N deposition has significant effects on the N uptake, δ(15)N and leaf N content (N(m)) of C(3) plants. As the atmospheric N deposition rises, the proportion and the amount of N absorbed from the simulated atmospheric deposition become higher, and the δ(15)N and N(m) of the two C(3) plants both also increase, suggesting that the rising atmospheric N deposition is beneficial for C(3) plants. However, C(4) plants display different patterns in their N uptake and in their variations of δ(15)N and N(m) from those of C(3) plants. C(4) plants absorb less N from the atmospheric deposition, and the leaf N(m) does not change with the elevated atmospheric N deposition. Photosynthetic pathways may account for the differences between C(3) and C(4) plants. This study also shows that atmospheric N deposition does not play a role in determining the δ(13)C and in the long-term water-use efficiency of C(3) and C(4) plants, suggesting that the long-term water-use pattern of the plants does not change with the atmospheric N input. In addition, this study does not observe any relationship between leaf δ(15)N and leaf δ(13)C in both C(3) and C(4) plants.  相似文献   

14.
We present data on the carbon (δ(13)C), nitrogen (δ(15)N) and sulfur (δ(34)S) isotope ratios of human hair collected in the central portions of the USA. These elements are incorporated into hair from the diet and thus provide a record of dietary inputs that may also document geospatial patterns. We detected regional differences in hair δ(34)S values across the USA, with the lowest values in the northern Great Plains and increasing values towards the east, west and south. In contrast, no statistically significant patterns were detected in the spatial variation of human hair δ(13)C and δ(15)N values. Using δ(34)S values and a Geographic Information System approach, we created a map ('sulfur isoscape'). The accuracy of the map was tested using hair samples not included in its generation. We conclude that sulfur isotope analysis may represent a new tool to investigate the movements and/or region-of-origin of humans.  相似文献   

15.
Stable isotope techniques in food web studies often focus on organic carbon in food sources which are subsequently assimilated in the tissue of consumer organisms through diet. The presence of non‐dietary carbonates in bulk samples can affect their δ13C values, altering how their results are interpreted. Acidification of samples is a common practice to eliminate any inorganic carbon present prior to analysis. We examined the effects of pre‐analysis acidification on two size fractions of sediment organic matter (SOM) from marine and freshwater wetlands and pure muscle tissue of a common freshwater invertebrate (Cherax destructor). The elemental content and isotopic ratios of carbon and nitrogen were compared between paired samples of acidified and control treatments. Our results showed that acidification does not affect the elemental or isotopic values of freshwater SOM. In the marine environment acidification depleted the δ13C and δ15N values of the fine fraction of saltmarsh and δ15N values of mangrove fine SOM. Whilst acidification did not change the elemental content of invertebrate muscle tissue, the δ13C and δ15N values were affected. We recommend to researchers considering using acidification techniques on material prepared for stable isotope analysis that a formal assessment of the effect of acidification on their particular sample type should be undertaken. Further detailed investigation to understand the impact of acidification on elemental and isotopic values of organic matter and muscular tissues is required. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Ginseng is a health food and traditional medicine highly valued in Asia. Ginseng from certain origins is higher valued than from other origins, so that a reliable method for differentiation of geographical origin is important for the economics of ginseng production. To discriminate between ginseng samples from South Korea and PR China, 29 samples have been analyzed for the isotopic composition of the elements H, C and N. The results showed δ(2)H values between -94 and -79‰, for δ(13)C -27.9 to -23.7‰ and for δ(15)N 1.3-5.4‰ for Chinese ginseng. Korean ginseng gave δ(2)H ratios between -91 and -69‰, δ(13)C ratios between -31.2 and -22.4‰ and δ(15)N ratios between -2.4 and +7‰. Despite the overlap between the values for individual isotopes, a combination of the isotope systems gave a reasonable differentiation between the two geographic origins. Especially the statistically significant difference in δ(2)H ratios facilitated the differentiation between Korean and Chinese ginseng samples.  相似文献   

17.
A recent literature review reported negative relationships between diet discrimination factors (DDFs = Xfish – Xfood; X = δ15N or δ13C) and the values of δ15N and δ13C in the food of wild organisms but there has been no laboratory‐based confirmation of these relationships to date. Laboratory reared guppies (Poecilia reticulata) fed a series of diets with a range of δ13C (?22.9 to ?6.6‰) and δ15N (6.5 to 1586‰) values were used to magnify diet‐tissue dynamics in order to calculate DDFs once the fish had achieved equilibrium with each of the diets. Values of DDFs range widely for δ15N (7.1 to ?849‰) and δ13C (1.1 to ?7.0‰) and showed a strong negative correlation with the stable isotope value in the food for δ15N (slope = ?0.59 ± 0.02, r2 = 0.95) and δ13C (slope = ?0.56 ± 0.02, r2 = 0.94). Based on these relationships, the magnitude of DDF change over environmentally relevant values of δ15N or δ13C would be significant and could confound the interpretation of stable isotopes in the environment. Using highly enriched experimental diets, our study adds to a growing number of studies that undermine the consistent trophic enrichment paradigm with results that demonstrate the currently poor mechanistic understanding of how DDFs arise. The results of our study highlight that the magnitude of the stable isotope values in prey must be considered when choosing DDF values. Future laboratory studies should therefore be directed at uncovering the mechanistic basis of DDFs and, like others before, we recommend the determination of diet‐dependent DDFs under laboratory conditions before modeling dietary proportions or calculating trophic positions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
(1)H, (13)C, (195)Pt and (15)N NMR studies of platinide(II) (M = Pd, Pt) chloride complexes with such alkyl and aryl derivatives of 2,2'-bipyridine and 1,10-phenanthroline as LL = 6,6'-dimethyl-bpy, 5,5'-dimethyl-bpy, 4,4'-di-tert-butyl-bpy, 2,9-dimethyl-phen, 2,9-dimethyl-4,7-diphenyl-phen, 3,4,7,8-tetramethyl-phen, having the general [M(LL)Cl(2)] formula were performed and the respective chemical shifts (δ(1H), δ(13C), δ(195Pt), δ(15N)) reported. (1)H high-frequency coordination shifts (Δ(coord)(1H) = δ(complex)(1H)-δ(ligand)(1H)) mostly pronounced for nitrogen-adjacent protons and methyl groups in the nearest adjacency of nitrogen, as well as (15)N low-frequency coordination shifts (Δ(coord)(15H) = δ(complex)(15H)-δ(ligand)(15H)) were discussed in relation to the molecular structures.  相似文献   

19.
In situ (13)C/(12)C isotopic labelling was conducted in field-grown beech (Fagus sylvatica) twigs to study carbon respiration and allocation. This was achieved with a portable gas-exchange open system coupled to an external chamber. This method allowed us to subject leafy twigs to CO(2) with a constant carbon isotope composition (delta(13)C of -51.2 per thousand) in an open system in the field. The labelling was done during the whole light period at two different dates (in June 2002 and October 2003). The delta(13)C values of respiratory metabolites and CO(2) that is subsequently respired during the night were measured. It was found that night-respired CO(2) is not completely labelled (only ca. 58% and 27% of new carbon is found in respired CO(2) immediately after the labelling in June 2002 and October 2003, respectively) and the labelling level progressively disappeared during the next day. It is concluded that the carbon respired by beech leaves after illumination was supplied by a mixture of carbon sources in which current carbohydrates were not the only contributors. In addition, as has been found in herbaceous plants, isotopic data before labelling showed that carbon isotope discrimination favoring the (13)C isotope occurred during the night respiration of beech leaves.  相似文献   

20.
The computations involved in the CO(2)(+) ion beam method of determining simultaneously a pair of constituent elemental isotopic abundance ratios P and Q (viz. (13)C/(12)C and (17)O/(16)O, or (13)C/(12)C and (18)O/(16)O, or (17)O/(16)O and (18)O/(16)O) are worked out, and the possible implications of their involvement as an analytical step are evaluated theoretically. It is shown, as an immediate consequence, that accurate measurements of the required isotopic CO(2)(+) abundance ratios (R(j) and R(k)) do not necessarily mean that the results (P; Q) are equally accurate. It is demonstrated that, and also explained why, the results can be far more inaccurate, or even in some cases more accurate, than the (R(j);R(k)) values themselves. It is clarified how the errors of analysis (delta(P) and delta(Q)) are actually governed, and elaborated further by evaluating their variations as a function of different possible parameters which control their magnitudes. The investigations thus help to predict the required analytical conditions for accurate isotopic analysis of carbon and/or oxygen samples of any origin as CO(2)(+). The considerations for the case of natural samples predict that, while it should be generally possible to simultaneously determine the isotopic abundance ratios of (13)C/(12)C and (18)O/(16)O with an accuracy better than the measurements themselves, the determination of either the ((13)C/(12)C and (17)O/(16)O) ratios or the ((17)O/(16)O and (18)O/(16)O) ratios, with an accuracy as good as that of the measurements, would be extremely difficult and may, in practice, be impossible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号