首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
New LnxSb2−xS3 (Ln: Lu3+, Ho3+, Nd3+)-based nanomaterials were synthesized by a co-reduction method. Powder XRD patterns indicate that the LnxSb2−xS3 crystals (Ln=Lu3+, Ho3+, x=0.00−0.1 and Ln=Nd3+, x=0.00−0.08) are isostructural with Sb2S3. SEM images show that doping of Lu3+ and Ho3+ ions in the lattice of Sb2S3 results in nanorods while that in Nd3+ leads to nanoflowers. UV-vis absorption and emission spectroscopy reveal mainly electronic transitions of the Ln3+ ions in case of Ho3+ and Nd3+ doped nanomaterials. Emission spectra show intense transitions from excited to ground state of Ln3+. Emission spectra of doped materials, in addition to the characteristic red emission peaks of Sb2S3, show other emission bands originating from f-f transitions of the Ho3+ ions. TGA curves indicated that Sb2S3 has the highest thermal stability. The electrical conductance of Ln-doped Sb2S3 is higher than undoped Sb2S3, and increase with temperature.  相似文献   

2.
Sm3+ doped Sb2Se3 nanorods were synthesized by the co-reduction method at 180 °C and pH=12 for 48 h. Powder XRD patterns indicate that the SmxSb2−xSe3 crystals (x=0.00-0.05) are isostructural with Sb2Se3. The cell parameters increase for Sm3+ upon increasing the dopant content (x). SEM images show that doping of Sm3+ ions in the lattice of Sb2Se3 results in nanorods. High-resolution transmission electron microscopic (HRTEM) studies reveal that the Sm0.05Sb1.95Se3 is oriented in the [1 0 −1] growth direction. UV-vis absorption reveals mainly electronic transitions of the Sm3+ ions in doped nanomaterials. Emission spectra of doped materials, in addition to the characteristic red emission peaks of Sb2Se3, show other emission bands originating from f-f transitions of the Sm3+ ions. The electrical conductance of Sm-doped Sb2Se3 is higher than undoped Sb2Se3 and increase with temperature.  相似文献   

3.
Tetraphosphate glasses doped with different concentration Ln3+ (Ln=Nd, Yb and Er) were prepared. The IR transmission spectra and fluorescence lifetimes were measured. The relationships between IR-fluorescence decay rate and OH group content were investigated and analyzed. The constant kOH-Ln, which represents the strength of interaction between Ln3+ ions and OH groups in the case of energy migration, were calculated for Nd3+, Yb3+ and Er3+ doped tetraphosphate glasses.  相似文献   

4.
郭琳娜  王育华 《物理学报》2011,60(2):27803-027803
采用化学共沉淀法制备了系列Y1.98-2xYb2x Er0.02SiO5(0.00≤x≤0.15)以及Y1.736Yb0.24Er0.02Tm0.004SiO5上转换发光材料,比较了室温下Y1.98-2xYb2x Er0.02 SiO5 (x=0.00,0.08)样品在400—1600 nm范围内的吸收光谱,测量了所有样品在976 nm OPO激光器激发下的上转换发射光谱,以及Er3+离子4S3/2(4F9/2)→4I15/2,Tm3+离子1G43H6荧光衰减曲线和不同激发功率下的上转换蓝光发射强度,从而分析讨论了Er3+,Tm3+在Y2SiO5中的上转换发光机理.研究结果表明:在1250 ℃相对较低的温度下合成了X2型单斜晶系Y2SiO5 ∶Ln3+(Ln3+=Er3+,Yb3+,Tm3+),Yb3+的敏化显著增强了样品在976 nm附近的吸收能力,并大幅度加宽了该处的吸收带.分析上转换发射光谱发现:上转换绿光和红光强度都随着Yb3+浓度的增加先增强后减弱,但红光的猝灭浓度较高,归因于Er3+→Yb3+反向能量传递ETU4和Yb3+→Er3+正向能量传递ETU3过程的发生;上转换蓝光发射是三光子吸收过程,是通过Yb3+,Tm3+之间三次声子辅助的能量转移方式实现的. 关键词: 上转换 共沉淀 2SiO5∶Er3+')" href="#">Y2SiO5∶Er3+ 3+')" href="#">Yb3+ 3+')" href="#">Tm3+  相似文献   

5.
Solid solutions of vanadates of formula BixLn1−xVO4 (Ln=Y, Gd) doped with Eu3+ or Sm3+ ions have been synthesized by solid-state reactions. Intense red/orange-red luminescence is obtained in these samples on excitation in the broad charge-transfer band in the near UV. The excitation in the Eu3+ levels leads to much less intense red emission. These materials could find applications as red phosphors for solid-state white lighting devices utilizing GaN-based excitation in the near UV.  相似文献   

6.
Lanthanide (Ln=Yb3+, Er3+and Tm3+) doped monodisperse oleate-capped BaGdF5 nanocrystals with a mean diameter of approximately 18 nm were prepared via liquid-solid-solution method. The cell parameter of the as-prepared cubic BaGdF5 nanocrystals is 5.884 Å, which is different from the reported 6.023 Å (JCPDS 24-0098). When excited by a 980 nm laser, these Ln3+ doped nanocrystals exhibit multi-color up-conversion (UC) emissions including blue, yellow and white, by precisely adjusting the dopant concentration of Yb3+, Er3+ and Tm3+. The oleate ligands capped on the surface of the as-synthesized products, which can be conversed from hydrophobic to hydrophilic along with certain extent of weakening of UC intensity, can be moved by the acid treatment process. The measured field dependence of magnetization (M-H curves) of the BaGdF5 nanocrystals shows excellent paramagnetism. At room temperature, the magnetization of BaGd0.798Yb0.2Tm0.002F5 nanocrystals is 0.9165 emu/g and the magnetic mass susceptibility reaches 6.11×10−5 emu g−1 Oe−1 at 15 kOe. Our results indicate that these bi-functional hydrophilic Ln3+ doped BaGdF5 nanocrystals have potential applications in color displays, bioseparation and optical-magnetic dual modal nanoprobes in biomedical imaging.  相似文献   

7.
Optical and electron paramagnetic resonance study have been carried out on BaY2F8 single crystals doped with Yb ions at 0.5 and 10 mol%. The crystals have been obtained using the Czochralski method modified for fluoride crystal growth. Optical transmission measurements in the range of 190-3200 nm and photoluminescence measurements were carried out at room temperature. Absorption spectra of BaY2F8 single crystals doped with Yb due to the 2F7/22F5/2 transitions have been observed in the 930-980 nm range. To analyze the possible presence of Yb2+ ions in the investigated crystals, irradiation with γ-quanta with a dose of 105 Gy have been performed. The observed photoluminescence bands show usual emission in IR and other one in VIS, being an effect of cooperative emission of Yb3+ ions and energy up-conversion transitions of photons from IR to UV-vis(visible) due to hoping process between energy levels of paired Yb3+ and Er3+, where Er3+ ions are unintentional dopants. The EPR spectra of BaY2F8:Yb 10 mol% consist of many overlapping lines. They have been analyzed in terms of spin monomers, pairs, and clusters. The angular dependence of the resonance lines positions have been studied also to find the location of coupled ytterbium ions in the crystal structure.  相似文献   

8.
用高温熔融法制备了系列Er3+/Yb3+共掺,Ho3+/Yb3+共掺,和Er3+/Yb3+/Ho3+三掺碲酸盐玻璃,在975nm激光抽运下三种掺杂玻璃中都出现了较强的绿光和红光上转换.研究了Yb3+离子对Er3+和Ho3+离子上转换发光强度的影响以及Yb3+→Er关键词: 3+/Yb3+/Ho3+共掺')" href="#">Er3+/Yb3+/Ho3+共掺 碲酸盐玻璃 光谱性质 上转换  相似文献   

9.
We prepared Er3+ doped and Er3+/Yb3+ codoped Sb2O4 nanocrystals by the sol-gel method. The Raman, X-ray diffraction (XRD), transmission electron microscope (TEM), and photoluminescence spectra of the samples were studied. The phonon energy of the Sb2O4 nanocrystals is very low (the maximum value being 461 cm−1). The upconversion (UC) red emission of the Er3+/Yb3+ codoped sample is very strong at 975 nm laser diode excitation. The Sb2O4 nanocrystals will be a promising luminous material.  相似文献   

10.
This paper reports on the absorption, visible and near-infrared luminescence properties of Nd3+, Er3+, Er3+/2Yb3+, and Tm3+ doped oxyfluoride aluminosilicate glasses. From the measured absorption spectra, Judd-Ofelt (J-O) intensity parameters (Ω2, Ω4 and Ω6) have been calculated for all the studied ions. Decay lifetime curves were measured for the visible emissions of Er3+ (558 nm, green), and Tm3+ (650 and 795 nm), respectively. The near infrared emission spectrum of Nd3+ doped glass has shown full width at half maximum (FWHM) around 45 nm (for the 4F3/24I9/2 transition), 45 nm (for the 4F3/24I11/2 transition), and 60 nm (for the 4F3/24I13/2 transition), respectively, with 800 nm laser diode (LD) excitation. For Er3+, and Er3+/2Yb3+ co-doped glasses, the characteristic near infrared emission bands were spectrally centered at 1532 and 1544 nm, respectively, with 980 nm laser diode excitation, exhibiting full width at half maximum around 50 and 90 nm for the erbium 4I13/24I15/2 transition. The measured maximum decay times of 4I13/24I15/2 transition (at wavelength 1532 and 1544 nm) are about 5.280 and 5.719 ms for 1Er3+ and 1Er3+/2Yb3+ (mol%) co-doped glasses, respectively. The maximum stimulated emission cross sections for 4I13/24I15/2 transition of Er3+ and Er3+/Yb3+ are 10.81×10−21 and 5.723×10-21 cm2. These glasses with better thermal stability, bright visible emissions and broad near-infrared emissions should have potential applications in broadly tunable laser sources, interesting optical luminescent materials and broadband optical amplification at low-loss telecommunication windows.  相似文献   

11.
Lanthanide (Ln3+) doped BaYF5 (Ln=Yb3+, Er3+, Tm3+) nanocrystals (NCs) with a mean size of approximately 10 nm are synthesized by a solvothermal method using oleic acid as a stabilizing agent at 210 °C. The size of BaYF5 NCs can be controlled by simply tuning the reaction parameters such as reaction temperature, reaction time and the molar ratio of F/Y3+. The detailed structure investigation reveals that the as-synthesized BaYF5 NCs are in the cubic structure with space group Fm3¯m instead of the reported tetragonal structure. Ln3+ cations occupy crystal lattice positions with lower point symmetry, which may lead to high upconversion efficiency under the excitation of a 980 nm diode laser. By adjusting the dopant concentrations of Yb3+, Er3+ and Tm3+, intense near-infrared, blue, yellow and white upconversion emissions are readily realized, respectively. The desirable property of the ultrasmall monodisperse NCs makes it the promising material for the applications in miniaturized solid-state light sources, multicolor three-dimensional display devices and fluorescent labels for biomedicine imaging.  相似文献   

12.
The Y2O3:R(R = Yb3+, Er3+, Tm3+) nanophosphors were synthesized by a solvothermal method and the temperature dependence of the white upconversion emission was studied using a 975 nm LD. The upconversion emission spectra in 1 mol% Er3+/5 mol% Yb3+/xTm3+ tri-doped Y2O3 nanophosphors were sintered at 1000 °C with x from 0 to 0.5 mol%. The blue emission intensity increases increasing Tm3+ concentration from 0 to 0.5 mol%, because the Tm3+ state can be easily reached due to the 2F7/2 → 2F5/2 transition of Yb3+ near 10,000 cm−1. The Y2O3: Er3+/Yb3+/Tm3+ nanophosphors exhibit upconversion emission from white to green with increasing sintering temperature. The calculated CIE coordinates are located in the white region at a pump power of 700 mW at 1000 °C, and the color coordinates were very similar to the standard white light emission. Their upconversion process was described through energy level diagrams and results of upconversion emission spectra and pump power dependence.  相似文献   

13.
An innovative upconversion (UC) emissions route of Er3+ by Yb3+–Mn2+ dimer sensitizing in Er3+–Mn2+:Yb3Al5O12 (YbAG) nanocrystals is reported here, which resulted in the selective enhancement of green UC emission and suppression of red UC emission by a 976 nm laser diode excitation. By codoping of Mn2+, the green UC emission intensity increased about 260 times, while the red UC emission intensity decreased about 20 times than that of Er3+:YbAG nanocrystals. It indicates that the green enhancement and red suppression arise from the high excited state energy transfer with |2F7/2, 4T1g> (Yb3+–Mn2+ dimer) to the 4F7/2 (Er3+), which partly decreases the nonradiative processes happened in the lower levels of Er3+. The proposed sensitizing route here may constitute a promising step to realize high-efficient UC emissions of rare-earth ions doped oxides and significantly extend their scope of applications.  相似文献   

14.
Optical absorption and emission spectra of Er3+/Yb3+ ions in PLZT (Pb1−xLaxZryTi1−yO3) ceramic have been studied. Based on the Judd—Ofelt (J-O) theory, the J-O intensity parameters were calculated to be Ω2=2.021×10−20 cm2, Ω4=0.423×10−20 cm2, Ω6=0.051×10−20 cm2 from the absorption spectrum of Er3+/Yb3+-codoped PLZT. The J-O intensity parameters have been used to calculate the radiative lifetimes and the branching ratios for some excited 4I13/2, 4I11/2, 4I9/24F9/2, and 4S3/2 levels of Er3+ ion. The stimulated emission cross-section (8.24×10−21 cm2) was evaluated for the 4I13/24I15/2 transition of Er3+. The upconversion emissions at 538, 564, and 666 nm have been observed in Er3+/Yb3+-codoped PLZT by exciting at 980 nm, and their origins were identified and analyzed.  相似文献   

15.
Spectroscopic characterization of Yb3+/Er3+ codoped TeO2–R2O–ZnO–Ln2O3 glasses as a function of network modifiers (R=Li, Na and K) has been investigated. The Judd–Ofelt parameters (Ωt), quantum efficiency in near infrared (1.55 μm) and visible up-conversion (546 and 660 nm) and quality factor spectroscopy (χ) were calculated. Three up-conversion emission bands centered at 525, 546 and 660 nm were observed as maxima for glasses containing potassium. The measured lifetime of 4I13/2, 4F9/2 and 4S3/2 from Er3+ and 4F5/2 from Yb3+ levels increased when potassium (K) replaced lithium (Li) and Na. The maximum emission cross-section (ECS) for 4I13/24I15/2 transition of Er3+ was calculated to be 1.02×10?20 cm2 for TeO2–Li2O–ZnO–Ln2O3 glasses. The energy transfer efficiency (ET) from Yb3+ to Er3+, (4F5/2)+(4I15/2)→(4F7/2)+(4I13/2), was calculated using the measured lifetimes of Yb3+ with and without the presence of acceptor (Er3+). The maximum calculated ET was 58% for 0.25 mol% of Er3+ and 3 mol% of Yb3+ for TeO2–K2O–ZnO–Ln2O3 glass composition.  相似文献   

16.
CaAl12O19 powders doped with Er3+, Yb3+, and Mg2+ ions have been prepared by a low-temperature combustion synthesis technique. Formation and chemical compositions were analysed by powder X-ray diffraction and energy-dispersive spectroscopy. The visible luminescence spectra of the doped phosphor upon excitation with ∼378 nm radiation from a Xenon lamp have been studied. A broad band emission in the range of 1400–1700 nm with a peak around 1.5 μm and FWHM of about ∼80 nm responsible for the eye-safe telecommunication window has been observed upon direct excitation with a NIR laser into the 4I11/2 level of Er3+. The effect of co-doping with Yb3+ and Mg2+ ions in the CaAl12O19:Er3+ matrix on the photoluminescence intensity corresponding to the 2H11/2,4S3/24I15/2, 4F9/24I15/2 and 4I13/24I15/2 transitions of Er3+ is elaborated and discussed in detail.  相似文献   

17.
Downconversion of a single blue/green photon to two near-infrared photons offers a promising route to increase the efficiency of photovoltaic cells. Here we report on downconversion for the well-known upconversion couple (Er3+, Yb3+) doped into a host with low (∼200 cm−1) maximum phonon energy (KPb2Cl5). The intermediate energy level in both the upconversion and downconversion processes is the 4F7/2 level around 490 nm. While fast multi-phonon relaxation to the lower energy 2H11/2/4S3/2 levels is beneficial for upconversion, it prevents efficient downconversion. To reduce multi-phonon relaxation, a low-phonon energy host (KPb2Cl5) was doped with Er3+ and varying amounts of Yb3+ co-dopant. The results show that downconversion from the 4F7/2 level occurs, exciting two neighboring Yb3+ ions to the 2F5/2 level. The efficiency is however low due to multi-phonon relaxation from the 4F7/2 to the 4S3/2 level via the intermediate 2H11/2 level. Based on the results it is clear that efficient downconversion for the (Er3+, Yb3+) couple requires even lower phonon energy hosts (e.g. bromide host lattices). A Cl-Yb3+ charge transfer absorption band is observed between 300 and 400 nm. Excitation in this band results in two broad emission bands centered around 430 and 700 nm at temperatures below 30 K, which are assigned to Cl-Yb3+ charge transfer emission.  相似文献   

18.
Uniform Yb3+ and Er3+-codoped Y2O3 hollow microspheres were synthesized via urea co-precipitation using carbon spheres as templates. Intense red emission (4F9/24I15/2) and weak green emission (2H11/2, 4S3/24I15/2) of Er3+ were observed for the Yb3+ and Er3+-codoped Y2O3 hollow microspheres under 980 nm infrared excitation. The integrated intensity of visible emission and the ratio of red to green were found to be strongly dependent on the amount of carbon sphere templates and the concentration of Yb3+ ions. The amount of carbon sphere templates also plays an important role in adjusting the size of crystallite. Multi-phonon relaxation resulted from the absorbents (OH and CO32−) on the surface of the crystallite, and efficient occur of energy transfer processes and cross-relaxation between Er3+ and Yb3+ are responsible for the enhancement of intensity ratio of red to green emission. Interestingly, for higher concentration of Yb3+ ions, the green emission is assigned to a three-phonon process in Y2O3:Yb/Er hollow microspheres, which also could result in the increase of the red to green emission ratio. An explanation to account for these behaviors was presented.  相似文献   

19.
B.S. Cao  Y.Y. He  M. Song 《Optics Communications》2011,284(13):3311-3314
Crystalline structures and infrared-to-visible upconversion luminescence spectra have been investigated in 1 mol% Er3+, 10 mol% Yb3+ and 0-20 mol% Li+ codoped TiO2 [1Er10Yb(0-20)Li:TiO2] nanocrystals. The crystalline structures of 1Er10Yb(0-20)Li:TiO2 were divided into three parts by the addition of Yb3+ and Li+. Both green and red upconversion emissions were observed from the 2H11/2/4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of Er3+ in Er3+-Yb3+-Li+ codoped TiO2, respectively. The green and red upconversion emissions of 1Er:TiO2 were enhanced significantly by Yb3+ and Li+ codoping, in which the intensities of green and red emissions and the intensity ratio of green to red emissions (Igreen/Ired) were highly dependent on the crystalline structures. The significant enhanced upconversion emissions resulted from the energy migration between Er3+ and Yb3+ as well as the distortion of crystal field symmetry of Er3+ caused by the dissolving of Li+ at lower Li+ codoping concentration and the phase transformation at higher Li+ concentration. It is concluded that codoping with ions of smaller ionic radius like Li+ can efficiently improve the upconversion emissions of Er3+ or other rare-earth ions doped luminsecence materials.  相似文献   

20.
肖思国  阳效良  丁建文 《物理学报》2009,58(6):3812-3820
采用共沉淀法制备了Er3+掺杂和Er3+/Yb3+共掺杂LaF3超微材料,所制备的样品的颗粒呈球形,尺寸为250nm左右.计算得到Er3+单掺杂样品中对应着4S3/24F9/2能级的发光量子效率分别为67.0%和71.9%.研究发现,随着Yb3+离子浓度的增加 关键词: 3+')" href="#">Er3+ 3+')" href="#">Yb3+ 发光 能量传递  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号