首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the behavior of the structure of titanium hydride (TiH2), an important compound in hydrogen storage research, at elevated temperatures (0-120 °C) and high pressures (1 bar-34 GPa). Temperature-induced changes of TiH2 as indicated in the alteration of the ambient X-ray demonstrated a cubic to tetragonal phase transition occurring at about 17 °C. The main focus of this study was to identify any pressure-induced structural transformations, including possible phase transitions, in TiH2. Synchrotron X-ray diffraction studies were carried out in situ (diamond anvil cell) in a compression sequence up to 34 GPa and in subsequent decompression to ambient pressure. The pressure evolution of the diffraction patterns revealed a cubic (Fm-3m) to tetragonal (I4/mmm) phase transition at 2.2 GPa. The high-pressure phase persisted up to 34 GPa. After decompression to ambient conditions the observed phase transition was completely reversible. A Birch-Murnaghan fit of the unit cell volume as a function of pressure yielded a zero-pressure bulk modulus K0=146(14) GPa, and its pressure derivative K0=6(1) for the high-pressure tetragonal phase of TiH2.  相似文献   

2.
Photoluminescence spectra of Sm2+-doped BaBr2 have been measured under hydrostatic pressures up to 17 GPa at room temperature. In the low pressure range a red-shift of the broad 5d-4f transition of −145 cm−1/GPa is observed. From 5 to 8 GPa a phase mixture of the initial orthorhombic phase and the high-pressure monoclinic phase gives rise to two 5d-4f bands, which are strongly overlapping. Above 8 GPa the crystal is completely transformed to its high-pressure phase where two different Sm2+ sites exist, but only one broad 5d-4f transition is detected. It exhibits a red-shift of −36 cm−1/GPa. In addition, the line shifts of the 5D07FJ (J=0, 1, 2) transitions are investigated. Linear shifts of −19 cm−1/GPa for J=0, 2 and of −13 cm−1/GPa for J=1 are observed in the pressure range from 0 to 5 GPa.  相似文献   

3.
An in situ Raman spectroscopic study was conducted to investigate the pressure induced phase transformation of MgCr2O4 spinel up to pressures of 76.4 GPa. Results indicate that MgCr2O4 spinel undergoes a phase transformation to the CaFe2O4 (or CaTi2O4) structure at 14.2 GPa, and this transition is complete at 30.1 GPa. The coexistence of two phases over a wide range of pressure implies a sluggish transition mechanism. No evidence was observed to support the pressure-induced dissociation of MgCr2O4 at 5.7-18.8 GPa, predicted by the theoretical simulation. This high pressure MgCr2O4 polymorphism remains stable upon release of pressure, but at ambient conditions, it transforms to the spinel phase.  相似文献   

4.
We investigate the structural, phase transition and elastic properties of SnO2 in the rutile-type, pyrite-type, ZrO2-type and cotunnite-type phases by the plane-wave pseudopotential density functional theory method. The lattice constants, bulk modulus and its pressure derivative are well consistent with the available experimental and other theoretical data. Also, we find that the rutile→pyrite, pyrite→ZrO2 and ZrO2→cotunnite phase transition occur at 12.9, 59.1 and 111.1 GPa, which are in better agreement with the experimental results than those of Gracia et al. (2007). Moreover, we obtain the pressure dependences of elastic constants for the four structures.  相似文献   

5.
We report the results of an X-ray diffraction study of CdAl2Se4 and of Raman studies of HgAl2Se4 and ZnAl2Se4 at room temperature, and of CdAl2S4 and CdAl2Se4 at 80 K at high pressure. The ambient pressure phase of CdAl2Se4 is stable up to a pressure of 9.1 GPa above which a phase transition to a disordered rock salt phase is observed. A fit of the volume pressure data to a Birch-Murnaghan type equation of state yields a bulk modulus of 52.1 GPa. The relative volume change at the phase transition at ∼9 GPa is about 10%. The analysis of the Raman data of HgAl2Se4 and ZnAl2Se4 reveals a general trend observed for different defect chalcopyrite materials. The line widths of the Raman peaks change at intermediate pressures between 4 and 6 GPa as an indication of the pressure induced two stage order-disorder transition observed in these materials. In addition, we include results of a low temperature Raman study of CdAl2S4 and CdAl2Se4, which shows a very weak temperature dependence of the Raman-active phonon modes.  相似文献   

6.
Since the discovery of post-spinel Si3N4, its fundamental physical properties are highly required. In this paper, theoretical calculations are performed to investigate the structural and elastic properties of the β-, γ-, wII- and post-spinel Si3N4 polymorphs. The calculated ground-state properties compare well with available experiments. The phase transformations of the β-, γ-, wII- and post-spinel phases are investigated by the famous plane-wave pseudo-potential density functional theory. From the elastic constants obtained, we find that β-, γ- and wII-Si3N4 are stable at 0 GPa and the post-spinel phase is unstable/stable at 0 GPa/160 GPa. When the high-temperature β→γ transformation is bypassed due to kinetic reasons, β-Si3N4 is predicted to undergo a first-order phase transition to a new phase (wII-Si3N4). It is found that the transition pressures of β→wII and γ→post-spinel transitions are 20.8 GPa and 152.5 GPa, respectively. The phase boundary of the γ→post-spinel transition can be described as P=152.3631−6.39×10−3T+2.01062×10−5T2−1.93962×10−9T3. Through the quasi-harmonic approximation, the dependences of heat capacity, entropy, thermal expansion coefficient and the Debye temperature on temperature, are also successfully predicted.  相似文献   

7.
Electrical conduction and crystal structure of Al2(WO4)3 at 400 °C have been studied as a function of pressure up to 5.5 GPa using impedance methods and synchrotron radiation X-ray diffraction, respectively. AC impedance spectroscopy and DC polarization measurements reveal an ionic to electronic dominant transition in electrical conductivity at a pressure as low as 0.9 GPa. Conductivity increases with pressure and reaches a maximum at 4.0 GPa, where the conductivity value is 5 orders of magnitude greater than the 1 atm value. Upon decompression, the conductivity retains the maximum value until the sample is cooled at 0.5 GPa. The high pressure-temperature X-ray diffraction results show that the lattice parameters decrease as pressure increases and the crystal structure undergoes an orthorhombic to tetragonal-like transformation at a pressure ∼3.0 GPa. The change of conduction mechanism from ionic to electronic may be explained by means of pressure-induced valence change of W6+→W5+, which results in electron transfer between W5+-W6+ sites at high pressure.  相似文献   

8.
X-ray diffraction and infrared spectroscopy of CaSO4 are conducted to pressures of 28 and 25 GPa, respectively. A reversible phase transition to the monoclinic monazite-structure occurs gradually between 2 and ∼5 GPa with a highly pressure-dependent volume change of ∼6-8%. A second-order fit of the X-ray data to the Birch-Murnaghan equation of state yields a bulk modulus (K) of 151.2 (±21.4) GPa for the high-pressure monoclinic phase. In the high-pressure infrared spectrum, the infrared-active asymmetric stretching and bending vibrations of the sulfate tetrahedra split at the phase transition, in accord with the results of factor group analysis. Additionally, the tetrahedral symmetric stretching vibration, which is weak in the anhydrite phase, becomes strongly resolved at the transition to the monazite structure. The infrared results indicate that the sulfate tetrahedra are more distorted in the monazite-structured phase than in anhydrite. Kinetic calculations indicate that the anhydrite to monazite transformation may generate the phase transition observed near 30 GPa under shock loading in CaSO4. Our results indicate that the anhydrite- and monazite-structured phases may be the only phases that occur under shock loading of CaSO4 to pressures in excess of 100 GPa.  相似文献   

9.
High pressure Raman scattering experiments have been performed for Rb8Sn442 in order to investigate the pressure induced phase transition. At pressures of 6.0 and 7.5 GPa, Raman spectrum was drastically changed, indicating the phase transitions. The irreversibility of the spectral change and the disappearance of Raman peak observed at 7.5 GPa strongly suggest the occurrence of irreversible amorphization.  相似文献   

10.
In this paper, attention in focused on the nanostructured magnesium films for hydrogen storage. It is shown that 2 μm thick Mg film is transformed into MgH2 film under high-flux and fluence hydrogen plasma immersion ion implantation at 450 K for 15 min. All hydrogen desorbs at temperature about 530 K, which corresponds to the decomposition of MgH2 → Mg + H2↑. The macroscopic and microscopic observations show that magnesium film undergoes a high deformation and restructuring during hydrogenation-dehydrogenation reaction. The suggested hydrogenation model is based upon the incorporation of excess of hydrogen atoms in grain boundaries of nanocrystalline Mg film driven by the increase in surface chemical potential associated with the implantation flux. The results provide new aspects of hydriding of thin nanocrystalline film materials under highly non-equalibrium conditions on the surface.  相似文献   

11.
We present a first-principles study of the phase transition and lattice dynamics of Ce within the framework of the density functional theory using the GGA+U method. Our calculated results denote that under pressure the transition path is α-Ce (fcc)→α″-Ce (monoclinic, with two atoms per unit cell)→bct-Ce (body centered tetragonal), and the transition pressures are located at 5.36 and 14.37 GPa, respectively. The equation of state in a wide range of pressure is consistent with the experimental data. During the γ-α phase transition, the magnetic moment disappears gradually, which is mainly due to the strong interaction between the 4f and 5d electrons. By calculating the free energies from phonon dispersions including electronic contribution, the obtained γ-α transition temperature at zero pressure is 148 K. From the Blackman diagram of dimensionless elastic constant ratios, we can find that both γ- and α-Ce show negative Cauchy pressure—C44>C12.  相似文献   

12.
Ab initio phonon calculations on CdS are performed to probe the high pressure structural behaviors. We predicted an unstable transverse acoustic (TA) mode for NaCl-CdS (B1) and a phase transition of B1→Pmmn driven by this soft mode is thus identified, excluding probable high pressure Cmcm phase. Furthermore, a softening TA phonon mode at the zone boundary M point of CsCl-CdS (B2) is predicted, which results in the phase transition from Pmmn to tetrahedral P4/nmm (B10). Enthalpy calculation reveals that Pmmn phase becomes energetically more favorable than the B1 phase over 51.2 GPa, and B10 phase is stable in a pressure range of 80.3-85.5 GPa, above which B10 phase will decompose into Cd and S.  相似文献   

13.
An investigation on the structural stabilities, electronic and optical properties of LiBeP under high pressure was conducted using the all-electron density functional theory within the local density approximation. Our results show that the sequence of the pressure induced phase transition of LiBeP is the Cu2Sb-type structure (P4/nmm), the MgSrSi-type structure (Pnma) and the LiGaGe-type structure (P63mc). The first transition (P4/nmm to Pnma) takes place at 2.95 GPa and the second (Pnma to P63mc) at 6.65 GPa. In the three phases, the bandgap is indirect and the valence band maximum is at the zone center. With increasing pressure LiBeP in the LiGaGe structure becomes a direct gap semiconductor at 19.75 GPa. The assignments of the structures in the optical spectra and the band structure transitions are discussed. The mean value of the optical dielectric constant for the Cu2Sb phase is smaller than that for the MgSrSi and the LiGaGe ones. This compound has a positive uniaxial anisotropy in the LiGaGe structure. The absorption coefficient along the z   direction, αzzαzz, for the MgSrSi structure is higher than that in the other two structures in the visible regime.  相似文献   

14.
First-principles calculations have been performed on NaAlH4 using the generalized gradient approximation pseudopotential method. The predicted β-NaAlH4 (α-LiAlH4-type) structure is energetically more favorable than α-NaAlH4 for pressures over 15.9 GPa, which is apparently correlated with the experimental transition pressure 14 GPa. This transition is identified as first-order in nature with volume contractions of 1.8%. There is no pressure-induced softening behavior from our calculated phonon dispersion curves near the phase transition pressure. Based on the Mulliken population analysis, the β-NaAlH4 structure is expected to be the most promising candidate for hydrogen storage.  相似文献   

15.
High pressure behavior of CaB6 with cubic crystal structure is investigated by means of energy dispersive X-ray diffraction and by employing in situ resistance measurement in a diamond anvil cell. Two newcome high pressure phase transitions are found with pressure ranging from ambient to 26 GPa. The first one at 12 GPa is a structural phase transition from CsCl-type structure to orthogonal structure, which is reflected by both the X-ray diffraction and the resistance variation. The other one at 3.7 GPa is suggested to be an electronic transition, which is observed only in resistance measurement. The diffraction pattern recovered while the pressure is released to 0 GPa with a pressure hysteresis over 11 GPa, which implies the reversibility of the two phase transitions. Bulk moduli of the cubic and orthogonal phases are estimated by fitting the data to a Brich-Murnaghan equation of state equal to 169.9 and 48.2 GPa, respectively.  相似文献   

16.
The high-pressure phase transition of CS2 was studied by combing ab initio molecular dynamics with total energy calculations. At 300 K the pieces of polymer structure were found to appear at 10 GPa in the molecular dynamics run, and further the CS4 tetrahedral structure to appear at about 20 GPa. The phase transition was then studied in the structure of Cmca, α-quartz and β-quartz by using the first-principle total energy calculation method. A phase transition from Cmca to β-quartz was found at 10.6 GPa. The calculated lattice constants of β-quartz at atmospheric pressure are a=5.44 and c/a=1.138 with B0=95 GPa. The calculation has also indicated that CS2 decomposes at 20 GPa and below 1000 K.  相似文献   

17.
The structural and magnetic properties of ErMn2H4.6 have been studied by X-ray and neutron diffraction up to the pressures of 15 and 6 GPa, respectively. In the pressure range 0<P<3 GPa we observe a first-order phase transition to new high-pressure (HP) phase. The HP phase has the same hexagonal unit cell as the ambient-pressure phase but smaller lattice parameters (ΔV/V=−5%). The structural transition results in suppression of the long-range antiferromagnetic order. Our results suggest that pressure changes positions of the hydrogen atoms in the metal host. We speculate that the new arrangement of hydrogen atoms induces spin frustration and, therefore, suppresses long-range magnetic order in the HP phase.  相似文献   

18.
Proton-deuteron mutual diffusion in a CsHSO4/CsDSO4 solid at 373 K was examined up to 3 GPa by an infrared mapping measurement. Phases HPHT1 and HPHT2 appeared at 1.5 and 2.3 GPa, respectively, after heating. These phases were found to be stable at room temperature, while phase IV, which appeared on compression at room temperature, was metastable. The pressure dependence of the proton-deuteron mutual diffusion coefficient was determined from the temporal change in the deuteron distribution of the solid. The coefficient decreased from 7×10−16 to 1×10−16 m2/s during the transition from phase II to HPHT1 at 1.5 GPa, and showed no significant change during the transition to phase HPHT2. These results suggested that in addition to the hydrogen bond length, other structural factors might also have had an influence on the rate of diffusion.  相似文献   

19.
Ab initio calculations show an antiferromagnetic-ferromagnetic phase transition around 9-10 GPa and a magnetic anomaly at 12 GPa in BiFeO3. The magnetic phase transition also involves a structural and insulator-metal transition. The G-type AFM configuration under pressure leads to an increase of the y component and a decrease of the z component of the magnetization, which is caused by the splitting of the dz2 orbital from doubly degenerate eg states. Our results agree with the recent experimental results.  相似文献   

20.
We have investigated the pressure variation of the volume and structure of an FCC Fe64Mn36 anti-ferromagnetic Invar alloy. The inclination of the pressure-volume (P-V) curve of the FCC structure becomes discontinuous at a pressure of 4 GPa. According to the bulk modulus at zero pressure estimated by the Birch-Murnaghan equation of state, the pressure between 4 and 10 GPa is 33 GPa larger than that at a pressure below 4 GPa. Considering previous experiments on magnetism at high pressure the Neel temperature at 4 GPa almost decreases to room temperature. These results suggest that the increase in the bulk modulus by 33 GPa can be attributed to the pressure-induced magnetic phase transition from anti-ferromagnetism to paramagnetism. Volume at zero pressure was estimated using the Birch-Murnaghan equation of state. The volume of FCC structure in the anti-ferromagnetic state was 1.17% larger than the volume in the paramagnetic state, namely, the spontaneous magnetostriction was 1.17%. Pressure-induced structural transition from FCC to HCP occurs with an increase in the pressure, especially at up to 5 GPa. The value of c/a is 1.62; this value almost corresponds to that of an ideal HCP structure. The bulk modulus of the HCP structure estimated by the Birch-Murnaghan equation of state is larger than that of the FCC structure, and the volume/atom ratio is smaller than that of the FCC structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号