首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Let (M,g) be an n-dimensional, compact Riemannian manifold and ${P_0(\hbar) = -\hbar{^2} \Delta_g + V(x)}$ be a semiclassical Schrödinger operator with ${\hbar \in (0,\hbar_0]}$ . Let ${E(\hbar) \in [E-o(1),E+o(1)]}$ and ${(\phi_{\hbar})_{\hbar \in (0,\hbar_0]}}$ be a family of L 2-normalized eigenfunctions of ${P_0(\hbar)}$ with ${P_0(\hbar) \phi_{\hbar} = E(\hbar) \phi_{\hbar}}$ . We consider magnetic deformations of ${P_0(\hbar)}$ of the form ${P_u(\hbar) = - \Delta_{\omega_u}(\hbar) + V(x)}$ , where ${\Delta_{\omega_u}(\hbar) = (\hbar d + i \omega_u(x))^*({\hbar}d + i \omega_u(x))}$ . Here, u is a k-dimensional parameter running over ${B^k(\epsilon)}$ (the ball of radius ${\epsilon}$ ), and the family of the magnetic potentials ${(w_u)_{u\in B^k(\epsilon)}}$ satisfies the admissibility condition given in Definition 1.1. This condition implies that kn and is generic under this assumption. Consider the corresponding family of deformations of ${(\phi_{\hbar})_{\hbar \in (0, \hbar_0]}}$ , given by ${(\phi^u_{\hbar})_{\hbar \in(0, \hbar_0]}}$ , where $$\phi_{\hbar}^{(u)}:= {\rm e}^{-it_0 P_u(\hbar)/\hbar}\phi_{\hbar}$$ for ${|t_0|\in (0,\epsilon)}$ ; the latter functions are themselves eigenfunctions of the ${\hbar}$ -elliptic operators ${Q_u(\hbar): ={\rm e}^{-it_0P_u(\hbar)/\hbar} P_0(\hbar) {\rm e}^{it_0 P_u(\hbar)/\hbar}}$ with eigenvalue ${E(\hbar)}$ and ${Q_0(\hbar) = P_{0}(\hbar)}$ . Our main result, Theorem1.2, states that for ${\epsilon >0 }$ small, there are constants ${C_j=C_j(M,V,\omega,\epsilon) > 0}$ with j = 1,2 such that $$C_{1}\leq \int\limits_{\mathcal{B}^k(\epsilon)} |\phi_{\hbar}^{(u)}(x)|^2 \, {\rm d}u \leq C_{2}$$ , uniformly for ${x \in M}$ and ${\hbar \in (0,h_0]}$ . We also give an application to eigenfunction restriction bounds in Theorem 1.3.  相似文献   

3.
The authors establish λ-central BMO estimates for commutators of maximal multilinear Calderón-Zygmund operators $T_{\Pi \vec b}^*$ and multilinear fractional operators $I_{\alpha \vec b}$ on central Morrey spaces respectively. Similar results still hold for $T_{\vec b} ,T_{\vec b}^*$ and $I_{\alpha ,\vec b}^*$ .  相似文献   

4.
Various interesting and potentially useful properties and relationships involving the Bernoulli, Euler and Genocchi polynomials have been investigated in the literature rather extensively. Recently, the present authors (Srivastava and Pinter in Appl Math Lett 17:375–380, 2004) obtained addition theorems and other relationships involving the generalized Bernoulli polynomials ${B_n^{(\alpha)}(x)}$ and the generalized Euler polynomials ${E_n^{(\alpha)}(x)}$ of order α and degree n in x. The main purpose of this sequel to some of the aforecited investigations is to give several addition formulas for a general class of Appell sequences. The addition formulas, which are derived in this paper, involve not only the generalized Bernoulli polynomials ${B_n^{(\alpha)}(x)}$ and the generalized Euler polynomials ${E_n^{(\alpha)}(x)}$ , but also the generalized Genocchi polynomials ${G_n^{(\alpha)}(x)}$ , the Srivastava polynomials ${\mathcal{S}_{n}^{N}\left( x\right)}$ , several general families of hypergeometric polynomials and such orthogonal polynomials as the Jacobi, Laguerre and Hermite polynomials. Some umbral-calculus generalizations of the addition formulas are also investigated.  相似文献   

5.
Let V be a two-dimensional absolutely irreducible ${\overline{\mathbb Qp}}$ -representation of ${{\rm Gal}(\overline{\mathbb Qp}/\mathbb Qp)}$ and let ${\prod(V)}$ be the ${{\rm GL}_2(\mathbb Qp)}$ Banach representation associated by Colmez??s p-adic Langlands correspondence. We establish a link between the action of the Lie algebra of ${{\rm GL}_2(\mathbb Qp)}$ on the locally analytic vectors ${\prod(V)^{\rm an}}$ of ${\prod(V)}$ , the connection ${\nabla}$ on the ${(\varphi, \Gamma)}$ -module associated to V and the Sen polynomial of V. This answers a question of Harris, concerning the infinitesimal character of ${\prod(V)^{\rm an}}$ . Using this result, we give a new proof of a theorem of Colmez, stating that ${\prod(V)}$ has nonzero locally algebraic vectors if and only if V is potentially semi-stable with distinct Hodge?CTate weights.  相似文献   

6.
P. Leopardi and the author recently investigated, among other things, the validity of the inequality $n\theta_n^{(\alpha,\beta)}\!<\! (n\!+\!1)\theta_{n+1}^{(\alpha,\beta)}$ between the largest zero $x_n\!=\!\cos\theta_n^{(\alpha,\beta)}$ and $x_{n+1}= \cos\theta_{n+1}^{(\alpha,\beta)}$ of the Jacobi polynomial $P_n^{(\alpha,\beta)}(x)$ resp. $P_{n+1}^{( \alpha,\beta)}(x)$ , α?>???1, β?>???1. The domain in the parameter space (α, β) in which the inequality holds for all n?≥?1, conjectured by us, is shown here to require a small adjustment—the deletion of a very narrow lens-shaped region in the square {???1?<?α?<???1/2, ???1/2?<?β?<?0}.  相似文献   

7.
Let $\{\mu _{t}^{(i)}\}_{t\ge 0}$ ( $i=1,2$ ) be continuous convolution semigroups (c.c.s.) of probability measures on $\mathbf{Aff(1)}$ (the affine group on the real line). Suppose that $\mu _{1}^{(1)}=\mu _{1}^{(2)}$ . Assume furthermore that $\{\mu _{t}^{(1)}\}_{t\ge 0}$ is a Gaussian c.c.s. (in the sense that its generating distribution is a sum of a primitive distribution and a second-order differential operator). Then $\mu _{t}^{(1)}=\mu _{t}^{(2)}$ for all $t\ge 0$ . We end up with a possible application in mathematical finance.  相似文献   

8.
Let ${\phi}$ be a rational function of degree at least two defined over a number field k. Let ${a \in \mathbb{P}^1(k)}$ and let K be a number field containing k. We study the cardinality of the set of rational iterated preimages Preim ${(\phi, a, K) = \{x_{0} \in \mathbb{P}^1(K) | \phi^{N} (x_0) = a {\rm for some} N \geq 1\}}$ . We prove two new results (Theorems 2 and 4) bounding ${|{\rm Preim}(\phi, a, K)|}$ as ${\phi}$ varies in certain families of rational functions. Our proofs are based on unit equations and a method of Runge for effectively determining integral points on certain affine curves. We also formulate and state a uniform boundedness conjecture for Preim ${(\phi, a, K)}$ and prove that a version of this conjecture is implied by other well-known conjectures in arithmetic dynamics.  相似文献   

9.
An inaccessible cardinal κ is supercompact when (κ, λ)-ITP holds for all λ?≥ κ. We prove that if there is a model of ZFC with two supercompact cardinals, then there is a model of ZFC where simultaneously ${(\aleph_2, \mu)}$ -ITP and ${(\aleph_3, \mu')}$ -ITP hold, for all ${\mu\geq \aleph_2}$ and ${\mu'\geq \aleph_3}$ .  相似文献   

10.
11.
Let f be an holomorphic endomorphism of ${\mathbb{P}^k}$ and μ be its measure of maximal entropy. We prove an almost sure invariance principle for the systems ${(\mathbb{P}^k,f,\mu)}$ . Our class ${\mathcal {U}}$ of observables includes the Hölder functions and unbounded ones which present analytic singularities. The proof is based on a geometric construction of a Bernoulli coding map ${\omega: (\Sigma, s, \nu) \to (\mathbb{P}^k,f,\mu)}$ . We obtain the invariance principle for an observable ψ on ${(\mathbb{P}^k,f,\mu)}$ by applying Philipp–Stout’s theorem for ${\chi = \psi \circ \omega}$ on (Σ, s, ν). The invariance principle implies the central limit theorem as well as several statistical properties for the class ${\mathcal {U}}$ . As an application, we give a direct proof of the absolute continuity of the measure μ when it satisfies Pesin’s formula. This approach relies on the central limit theorem for the unbounded observable log ${{\tt Jac}\, f \in \mathcal{U}}$ .  相似文献   

12.
Bijective operators conserving the indefinite scalar product on a Krein space ${(\mathcal{K}, J)}$ are called J-unitary. Such an operator T is defined to be ${\mathbb{S}^1}$ -Fredholm if T?z 1 is Fredholm for all z on the unit circle ${\mathbb{S}^1}$ , and essentially ${\mathbb{S}^1}$ -gapped if there is only discrete spectrum on ${\mathbb{S}^1}$ . For paths in the ${\mathbb{S}^1}$ -Fredholm operators an intersection index similar to the Conley–Zehnder index is introduced. The strict subclass of essentially ${\mathbb{S}^1}$ -gapped operators has a countable number of components which can be distinguished by a homotopy invariant given by the signature of J restricted to the eigenspace of all eigenvalues on ${\mathbb{S}^1}$ . These concepts are illustrated by several examples.  相似文献   

13.
This paper addresses the question of retrieving the triple ${(\mathcal X,\mathcal P, E)}$ from the algebraic geometry code ${\mathcal C = \mathcal C_L(\mathcal X, \mathcal P, E)}$ , where ${\mathcal X}$ is an algebraic curve over the finite field ${\mathbb F_q, \,\mathcal P}$ is an n-tuple of ${\mathbb F_q}$ -rational points on ${\mathcal X}$ and E is a divisor on ${\mathcal X}$ . If ${\deg(E)\geq 2g+1}$ where g is the genus of ${\mathcal X}$ , then there is an embedding of ${\mathcal X}$ onto ${\mathcal Y}$ in the projective space of the linear series of the divisor E. Moreover, if ${\deg(E)\geq 2g+2}$ , then ${I(\mathcal Y)}$ , the vanishing ideal of ${\mathcal Y}$ , is generated by ${I_2(\mathcal Y)}$ , the homogeneous elements of degree two in ${I(\mathcal Y)}$ . If ${n >2 \deg(E)}$ , then ${I_2(\mathcal Y)=I_2(\mathcal Q)}$ , where ${\mathcal Q}$ is the image of ${\mathcal P}$ under the map from ${\mathcal X}$ to ${\mathcal Y}$ . These three results imply that, if ${2g+2\leq m < \frac{1}{2}n}$ , an AG representation ${(\mathcal Y, \mathcal Q, F)}$ of the code ${\mathcal C}$ can be obtained just using a generator matrix of ${\mathcal C}$ where ${\mathcal Y}$ is a normal curve in ${\mathbb{P}^{m-g}}$ which is the intersection of quadrics. This fact gives us some clues for breaking McEliece cryptosystem based on AG codes provided that we have an efficient procedure for computing and decoding the representation obtained.  相似文献   

14.
15.
Let ${(\mathcal {X},\Omega)}$ be a closed polarized complex manifold, g be an extremal metric on ${\mathcal {X}}$ that represents the Kähler class Ω, and G be a compact connected subgroup of the isometry group Isom ${(\mathcal {X}, g)}$ . Assume that the Futaki invariant relative to G is nondegenerate at g. Consider a smooth family ${(\mathcal {M}\to B)}$ of polarized complex deformations of ${(\mathcal {X},\Omega)\simeq (\mathcal {M}_0,\Theta_0)}$ provided with a holomorphic action of G which is trivial on B. Then for every ${t\in B}$ sufficiently small, there exists an ${h^{1,1}(\mathcal {X})}$ -dimensional family of extremal Kähler metrics on ${\mathcal {M}_t}$ whose Kähler classes are arbitrarily close to Θ t . We apply this deformation theory to show that certain complex deformations of the Mukai–Umemura 3-fold admit Kähler–Einstein metrics.  相似文献   

16.
In this paper, we prove that every metric line of a Möbius gyrovector space ${(\mathbb{R}_{1}^{n}, \oplus, \otimes)}$ is exactly a cogyroline of itself, and also we prove the nonexistence of periodic lines in ${(\mathbb{R}_{1}^{n}, \oplus, \otimes)}$ .  相似文献   

17.
Let \(x_{n,k}^{(\alpha ,\beta )}\) , \(k=1,\ldots ,n\) , be the zeros of Jacobi polynomials \(P_{n}^{(\alpha ,\beta )}(x)\) arranged in decreasing order on \((-1,1)\) , where \(\alpha ,\beta >-1\) , and \(\theta _{n,k}^{(\alpha ,\beta )}=\arccos x_{n,k}^{(\alpha ,\beta )}\) . Gautschi, in a series of recent papers, conjectured that the inequalities $$n\theta_{n,k}^{(\alpha,\beta)}<(n+1)\theta_{n+1,k}^{(\alpha,\beta)} $$ and $$(n+(\alpha+\beta+3)/2)\theta_{n+1,k}^{(\alpha,\beta)}<(n+(\alpha+\beta+1)/2)\theta_{n,k}^{(\alpha,\beta)}, $$ hold for all \(n\geq 1\) , \(k=1,\ldots ,n\) , and certain values of the parameters \(\alpha \) and \(\beta \) . We establish these conjectures for large domains of the \((\alpha ,\beta )\) -plane by using a Sturmian approach.  相似文献   

18.
Given a vector field ${\mathfrak{a}}$ on ${\mathbb{R}^3}$ , we consider a mapping ${x\mapsto \Pi_{\mathfrak{a}}(x)}$ that assigns to each ${x\in\mathbb{R}^3}$ , a plane ${\Pi_{\mathfrak{a}}(x)}$ containing x, whose normal vector is ${\mathfrak{a}(x)}$ . Associated with this mapping, we define a maximal operator ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^1_{loc}(\mathbb{R}^3)}$ for each ${N\gg 1}$ by $$\mathcal{M}^{\mathfrak{a}}_Nf(x)=\sup_{x\in\tau} \frac{1}{|\tau|} \int_{\tau}|f(y)|\,dy$$ where the supremum is taken over all 1/N ×? 1/N?× 1 tubes τ whose axis is embedded in the plane ${\Pi_\mathfrak{a}(x)}$ . We study the behavior of ${\mathcal{M}^{\mathfrak{a}}_N}$ according to various vector fields ${\mathfrak{a}}$ . In particular, we classify the operator norms of ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^2(\mathbb{R}^3)}$ when ${\mathfrak{a}(x)}$ is the linear function of the form (a 11 x 1?+?a 21 x 2, a 12 x 1?+?a 22 x 2, 1). The operator norm of ${\mathcal{M}^\mathfrak{a}_N}$ on ${L^2(\mathbb{R}^3)}$ is related with the number given by $$D=(a_{12}+a_{21})^2-4a_{11}a_{22}.$$   相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号