首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a cubature formula of the form $$\int\limits_0^{2\pi } {\int\limits_0^{2\pi } {f(x,y)dxdy = \frac{{4\pi ^2 }} {{mn}}\sum\limits_{i = 0}^{n - 1} {\sum\limits_{j = 0}^{m - 1} {f\left( {\frac{{2\pi i}} {n},\frac{{2\pi j}} {m}} \right) + R_{n,m} (f)} } } }$$ on a Chebyshev grid, the remainder R n,m (f) is proved to satisfy the sharp estimate $$\mathop {\sup }\limits_{f \in H\left( {r_1 ,r_2 } \right)} \left| {R_{n,m} (f)} \right| = O\left( {n^{ - r_1 + 1} + m^{ - r_1 + 1} } \right)$$ in some class of functions H(r 1, r 2) defined by a generalized shift operator. Here, r 1, r 2 > 1; ???1 ?? n/m ?? ?? with ?? > 0; and the constant in the O-term depends only on ??.  相似文献   

2.
Let R be a commutative Noetherian ring, and let n be a non-negative integer. In this article, by using the theory of Gorenstein dimensions, it is shown that whenever R is a homomorphic image of a Noetherian Gorenstein ring, then the invariants ${\inf\{i \in \mathbb{N}_0|\, \rm{dim\, Supp}(\mathfrak{b}^t H_{\mathfrak{a}}^i(M)) \geq n\, \rm{for\, all}\, t \in \mathbb{N}_0\}}$ and ${\inf\{\lambda_{\mathfrak{a} R_{\mathfrak{p}}}^{\mathfrak{b} R_{\mathfrak{p}}}(M_{\mathfrak{p}})|\, \mathfrak{p} \in {\rm Spec} \, R\, \rm{and\, dim}\, R/ \mathfrak{p} \geq n\}}$ are equal, for every finitely generated R-module M and for all ideals ${\mathfrak{a}, \mathfrak{b}}$ of R with ${\mathfrak{b}\subseteq \mathfrak{a}}$ . This generalizes Faltings’ Annihilator Theorem (see [6]).  相似文献   

3.
In this paper, we study necessary and sufficient conditions for the relation $$\begin{array}{@{}l}P_n^{{[r]}}(x) + a_{n-1,r} P_{n-1}^{{[r]}}(x)= R_{n-r}(x) + b_{n-1,r} R_{n-r-1}(x),\\[5pt]\quad a_{n-1,r}\neq0,\ n\geq r+1,\end{array}$$ where {P n (x)} n??0 and {R n (x)} n??0 are two sequences of monic orthogonal polynomials with respect to the quasi-definite linear functionals $\mathcal{U},\mathcal{V}$ , respectively, or associated with two positive Borel measures ?? 0,?? 1 supported on the real line. We deduce the connection with Sobolev orthogonal polynomials, the relations between these functionals as well as their corresponding formal Stieltjes series. As sake of example, we find the coherent pairs when one of the linear functionals is classical.  相似文献   

4.
We consider the stochastic recursion ${X_{n+1} = M_{n+1}X_{n} + Q_{n+1}, (n \in \mathbb{N})}$ , where ${Q_n, X_n \in \mathbb{R}^d }$ , M n are similarities of the Euclidean space ${ \mathbb{R}^d }$ and (Q n , M n ) are i.i.d. We study asymptotic properties at infinity of the invariant measure for the Markov chain X n under assumption ${\mathbb{E}{[\log|M|]}=0}$ i.e. in the so called critical case.  相似文献   

5.
The volume of the unit ball in ${\mathbb{R}^{n}}$ is defined by $$\Omega_{n} = \frac{\pi^{n/2}}{\Gamma(n/2+1)},\qquad n = 1,2,3,\ldots,$$ where Γ denotes the classical gamma function of Euler. In several recently published papers numerous authors studied properties of Ω n . In particular, various inequalities involving Ω n are given in the literature. In this paper, we continue the work on this subject and offer new inequalities. More precisely, we offer sharp upper and lower bounds for $$\frac{\Omega_{n}^{2}}{\Omega_{n-1} \Omega_{n+1}},\quad\frac{\Omega_{n}}{\Omega_{n-1}+\Omega_{n+1}} \quad {\rm and} \quad\Omega_{n}.$$   相似文献   

6.
LetP κ,n (λ,β) be the class of functions \(g(z) = 1 + \sum\nolimits_{v = n}^\infty {c_\gamma z^v }\) , regular in ¦z¦<1 and satisfying the condition $$\int_0^{2\pi } {\left| {\operatorname{Re} \left[ {e^{i\lambda } g(z) - \beta \cos \lambda } \right]} \right|} /\left( {1 - \beta } \right)\cos \lambda \left| {d\theta \leqslant \kappa \pi ,} \right.z = re^{i\theta } ,$$ , 0 < r < 1 (κ?2,n?1, 0?Β<1, -π<λ<π/2;M κ,n (λ,β,α),n?2, is the class of functions \(f(z) = z + \sum\nolimits_{v = n}^\infty {a_v z^v }\) , regular in¦z¦<1 and such thatF α(z)∈P κ,n?1(λ,β), where \(F_\alpha (z) = (1 - \alpha )\frac{{zf'(z)}}{{f(z)}} + \alpha (1 + \frac{{zf'(z)}}{{f'(z)}})\) (0?α?1). Onr considers the problem regarding the range of the system {g (v?1)(z?)/(v?1)!}, ?=1,2,...,m,v=1,2,...,N ?, on the classP κ,1(λ,β). On the classesP κ,n (λ,β),M κ,n (λ,β,α) one finds the ranges of Cv, v?n, am, n?m?2n-2, and ofg(?),F ?(?), 0<¦ξ¦<1, ξ is fixed.  相似文献   

7.
A partial orthomorphism of ${\mathbb{Z}_{n}}$ is an injective map ${\sigma : S \rightarrow \mathbb{Z}_{n}}$ such that ${S \subseteq \mathbb{Z}_{n}}$ and ??(i)?Ci ? ??(j)? j (mod n) for distinct ${i, j \in S}$ . We say ?? has deficit d if ${|S| = n - d}$ . Let ??(n, d) be the number of partial orthomorphisms of ${\mathbb{Z}_{n}}$ of deficit d. Let ??(n, d) be the number of partial orthomorphisms ?? of ${\mathbb{Z}_n}$ of deficit d such that ??(i) ? {0, i} for all ${i \in S}$ . Then ??(n, d) =???(n, d)n 2/d 2 when ${1\,\leqslant\,d < n}$ . Let R k, n be the number of reduced k ×?n Latin rectangles. We show that $$R_{k, n} \equiv \chi (p, n - p)\frac{(n - p)!(n - p - 1)!^{2}}{(n - k)!}R_{k-p,\,n-p}\,\,\,\,(\rm {mod}\,p)$$ when p is a prime and ${n\,\geqslant\,k\,\geqslant\,p + 1}$ . In particular, this enables us to calculate some previously unknown congruences for R n, n . We also develop techniques for computing ??(n, d) exactly. We show that for each a there exists??? a such that, on each congruence class modulo??? a , ??(n, n-a) is determined by a polynomial of degree 2a in n. We give these polynomials for ${1\,\leqslant\,a\,\leqslant 6}$ , and find an asymptotic formula for ??(n, n-a) as n ?? ??, for arbitrary fixed a.  相似文献   

8.
Let {X k,i ; i ≥ 1, k ≥ 1} be a double array of nondegenerate i.i.d. random variables and let {p n ; n ≥ 1} be a sequence of positive integers such that n/p n is bounded away from 0 and ∞. In this paper we give the necessary and sufficient conditions for the asymptotic distribution of the largest entry ${L_{n}={\rm max}_{1\leq i < j\leq p_{n}}|\hat{\rho}^{(n)}_{i,j}|}$ of the sample correlation matrix ${{\bf {\Gamma}}_{n}=(\hat{\rho}_{i,j}^{(n)})_{1\leq i,j\leq p_{n}}}$ where ${\hat{\rho}^{(n)}_{i,j}}$ denotes the Pearson correlation coefficient between (X 1,i , ..., X n,i )′ and (X 1,j ,...,X n,j )′. Write ${F(x)= \mathbb{P}(|X_{1,1}|\leq x), x\geq0}$ , ${W_{c,n}={\rm max}_{1\leq i < j\leq p_{n}}|\sum_{k=1}^{n}(X_{k,i}-c)(X_{k,j}-c)|}$ , and ${W_{n}=W_{0,n},n\geq1,c\in(-\infty,\infty)}$ . Under the assumption that ${\mathbb{E}|X_{1,1}|^{2+\delta} < \infty}$ for some δ > 0, we show that the following six statements are equivalent: $$ {\bf (i)} \quad \lim_{n \to \infty} n^{2}\int\limits_{(n \log n)^{1/4}}^{\infty}\left( F^{n-1}(x) - F^{n-1}\left(\frac{\sqrt{n \log n}}{x}\right) \right) dF(x) = 0,$$ $$ {\bf (ii)}\quad n \mathbb{P}\left ( \max_{1 \leq i < j \leq n}|X_{1,i}X_{1,j} | \geq \sqrt{n \log n}\right ) \to 0 \quad{\rm as}\,n \to \infty,$$ $$ {\bf (iii)}\quad \frac{W_{\mu, n}}{\sqrt {n \log n}}\stackrel{\mathbb{P}}{\rightarrow} 2\sigma^{2},$$ $$ {\bf (iv)}\quad \left ( \frac{n}{\log n}\right )^{1/2} L_{n} \stackrel{\mathbb{P}}{\rightarrow} 2,$$ $$ {\bf (v)}\quad \lim_{n \rightarrow \infty}\mathbb{P}\left (\frac{W_{\mu, n}^{2}}{n \sigma^{4}} - a_{n}\leq t \right ) = \exp \left \{ - \frac{1}{\sqrt{8\pi}} e^{-t/2}\right \}, - \infty < t < \infty,$$ $$ {\bf (vi)}\quad \lim_{n \rightarrow \infty}\mathbb{P}\left (n L_{n}^{2} - a_{n}\leq t \right ) = \exp \left \{ - \frac{1}{\sqrt{8 \pi}} e^{-t/2}\right \}, - \infty < t < \infty$$ where ${\mu=\mathbb{E}X_{1,1}, \sigma^{2}=\mathbb{E}(X_{1,1} - \mu)^{2}}$ , and a n  = 4 log p n ? log log p n . The equivalences between (i), (ii), (iii), and (v) assume that only ${\mathbb{E}X_{1,1}^{2} < \infty}$ . Weak laws of large numbers for W n and L n , n ≥  1, are also established and these are of the form ${W_{n}/n^{\alpha}\stackrel{\mathbb{P}}{\rightarrow} 0}\,(\alpha > 1/2)$ and ${n^{1-\alpha}L_{n}\stackrel{\mathbb{P}}{\rightarrow} 0}\,(1/2 < \alpha \leq 1)$ , respectively. The current work thus provides weak limit analogues of the strong limit theorems of Li and Rosalsky as well as a necessary and sufficient condition for the asymptotic distribution of L n obtained by Jiang. Some open problems are also posed.  相似文献   

9.
Let F n be the nth Fibonacci number. The Fibonomial coefficients \(\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F\) are defined for nk > 0 as follows $$\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F = \frac{{F_n F_{n - 1} \cdots F_{n - k + 1} }} {{F_1 F_2 \cdots F_k }},$$ with \(\left[ {\begin{array}{*{20}c} n \\ 0 \\ \end{array} } \right]_F = 1\) and \(\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F = 0\) . In this paper, we shall provide several identities among Fibonomial coefficients. In particular, we prove that $$\sum\limits_{j = 0}^{4l + 1} {\operatorname{sgn} (2l - j)\left[ {\begin{array}{*{20}c} {4l + 1} \\ j \\ \end{array} } \right]_F F_{n - j} = \frac{{F_{2l - 1} }} {{F_{4l + 1} }}\left[ {\begin{array}{*{20}c} {4l + 1} \\ {2l} \\ \end{array} } \right]_F F_{n - 4l - 1} ,}$$ holds for all non-negative integers n and l.  相似文献   

10.
We obtain a sharp Remez inequality for the trigonometric polynomial T n of degree n on [0,2π): $$\|T_n \|_{L_\infty([0,2\pi))} \le \biggl(1+2\tan^2 \frac{n\beta}{4m} \biggr) { \|T_n \|_{L_\infty ([0,2\pi) \setminus B )}}, $$ where $\frac{2\pi}{m}$ is the minimal period of T n and $|B|=\beta<\frac {2\pi m}{n}$ is a measurable subset of $\mathbb {T}$ . In particular, this gives the asymptotics of the sharp constant in the Remez inequality: for a fixed n, $$\mathcal{C}(n, \beta)=1+ \frac{(n\beta)^2}{8} +O \bigl(\beta^4\bigr), \quad\beta \to0, $$ where $$\mathcal{C}(n,\beta):= \sup_{|B|=\beta}\sup_{T_n} \frac{ \|T_n \|_{L_\infty([0,2\pi ))}}{ \|T_n \|_{L_\infty ([0,2\pi) \setminus B )}}. $$ We also obtain sharp Nikol’skii’s inequalities for the Lorentz spaces and net spaces. Multidimensional variants of Remez and Nikol’skii’s inequalities are investigated.  相似文献   

11.
Let $\{x_{k,n}\}_{k=1}^n$ and $\{x_{k,n+1}\}_{k=1}^{n+1}$ , n?????, be two given sets of real distinct points with x 1,n?+?1?<?x 1,n ?<?x 2,n?+?1?<?...?<?x n,n ?<?x n?+?1,n?+?1. Wendroff (cf. Proc Am Math Soc 12:554?C555, 1961) proved that if $p_n(x)=\displaystyle{\prod\limits_{k=1}^n(x-x_{k,n})}$ and $p_{n+1}(x)=\displaystyle \prod\limits_{k=1}^{n+1}(x-x_{k,n+1})$ then p n and p n?+?1 can be embedded in a non-unique infinite monic orthogonal sequence $\{p_n\}_{n=0}^{\infty}$ . We investigate the connection between the zeros of p n?+?2 and the two coefficients b n?+?1????? and ?? n?+?1?>?0, which are chosen arbitrarily, that define p n?+?2 via the three term recurrence relation $$ p_{n+2}(x)=(x-b_{n+1})p_{n+1}(x)-\lambda_{n+1}p_n(x). $$   相似文献   

12.
We obtain conditions for the convergence in the spaces L p [0, 1], 1 ≤ p < ∞, of biorthogonal series of the form $$ f = \sum\limits_{n = 0}^\infty {(f,\psi _n )\phi _n } $$ in the system {? n } n≥0 of contractions and translations of a function ?. The proposed conditions are stated with regard to the fact that the functions belong to the space $ \mathfrak{L}^p $ of absolutely bundleconvergent Fourier-Haar series with norm $$ \left\| f \right\|_p^ * = \left| {f,\chi _0 } \right| + \sum\limits_{k = 0}^\infty {2^{k({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} - {1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p})} } \left( {\sum\limits_{n = 2^k }^{2^{k + 1} - 1} {\left| {f,\chi _n } \right|^p } } \right)^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} , $$ where (f n ), n = 0, 1, ..., are the Fourier coefficients of a function f ? L p [0, 1] in the Haar system {χ n } n≥0. In particular, we present conditions for the system {? n } n≥0 of contractions and translations of a function ? to be a basis for the spaces L p [0, 1] and $ \mathfrak{L}^p $ .  相似文献   

13.
Let $ \mathcal{P}_n $ denote the set of algebraic polynomials of degree n with the real coefficients. Stein and Wpainger [1] proved that $$ \mathop {\sup }\limits_{p( \cdot ) \in \mathcal{P}_n } \left| {p.v.\int_\mathbb{R} {\frac{{e^{ip(x)} }} {x}dx} } \right| \leqslant C_n , $$ where C n depends only on n. Later A. Carbery, S. Wainger and J. Wright (according to a communication obtained from I. R. Parissis), and Parissis [3] obtained the following sharp order estimate $$ \mathop {\sup }\limits_{p( \cdot ) \in \mathcal{P}_n } \left| {p.v.\int_\mathbb{R} {\frac{{e^{ip(x)} }} {x}dx} } \right| \sim \ln n. $$ . Now let $ \mathcal{T}_n $ denote the set of trigonometric polynomials $$ t(x) = \frac{{a_0 }} {2} + \sum\limits_{k = 1}^n {(a_k coskx + b_k sinkx)} $$ with real coefficients a k , b k . The main result of the paper is that $$ \mathop {\sup }\limits_{t( \cdot ) \in \mathcal{T}_n } \left| {p.v.\int_\mathbb{R} {\frac{{e^{it(x)} }} {x}dx} } \right| \leqslant C_n , $$ with an effective bound on C n . Besides, an analog of a lemma, due to I. M. Vinogradov, is established, concerning the estimate of the measure of the set, where a polynomial is small, via the coefficients of the polynomial.  相似文献   

14.
The goal of the present paper is to investigate some new stability results by applying the alternative fixed point of generalized quadratic functional equation $$\begin{array}{ll}f\left(\sum\limits_{i=1}^{n}a_ix_i\right)+{\sum\limits_{i=1}^{n-1}}{\sum\limits_{j=i+1}^{n}}\left[f(a_ix_i+a_jx_j)+2f(a_ix_i-a_jx_j)\right]\\ \qquad \quad = (3n-2){\sum\limits_{i=1}^{n}}a^2_{i}f(x_{i})\end{array}$$ in β–Banach modules on Banach algebras, where ${a_{1},\dots,a_{n}\in \mathbb{Z}{\setminus}\{0\}}$ and some ${\ell\in\{1 , 2 ,\dots, n-1\},}$ a ? ?≠ ±1 and a n ?=?1, where n is a positive integer greater or at least equal to two.  相似文献   

15.
We consider elliptic self-adjoint differential operators L of order 2m in a bounded region D? Rn. An asymptotic formula for the function N(λ) = \(N(\lambda ) = \sum\limits_{\lambda _n< \lambda } 1 \) the number of eigenvalues of the operator L less than A. is proved: $$N(\lambda ) = M_0 \lambda ^{n/2m} + o(\lambda ^{n/2m} )$$ whereλ → + ∞ and M0 is the following constant: $$M_0 = \frac{{V_D }}{{(2\pi )^n \Gamma (1 + n/2m)}}\int_{R_n } {e^{ - L(s)} ds} .$$   相似文献   

16.
We present various inequalities for the error function. One of our theorems states: Let α?≥?1. For all x,y?>?0 we have $$ \delta_{\alpha} < \frac{ \mbox{erf} \left( x+ \mbox{erf}(y)^{\alpha}\right) +\mbox{erf}\left( y+ \mbox{erf}(x)^{\alpha}\right) } {\mbox{erf}\left( \mbox{erf}(x)+\mbox{erf}(y)\right) } < \Delta_{\alpha} $$ with the best possible bounds $$ \delta_{\alpha}= \left\{ \begin{array}{ll} 1+\sqrt{\pi}/2, & \ \ \textrm{{if} $\alpha=1$,}\\ \sqrt{\pi}/2, & \ \ \textrm{{if} $\alpha>1$,}\\ \end{array}\right. \quad{\mbox{and} \,\,\,\,\, \Delta_{\alpha}=1+\frac{1}{\mbox{erf}(1)}.} $$   相似文献   

17.
We consider the following system of integral equations $${u_{i}(t)=\int\nolimits_{I} g_{i}(t, s)f(s, u_{1}(s), u_{2}(s), \cdots, u_{n}(s))ds, \quad t \in I, \ 1 \leq i\leq n}$$ where I is an interval of $\mathbb{R}$ . Our aim is to establish criteria such that the above system has a constant-sign periodic and almost periodic solution (u 1, u 2,…,u n ) when I is an infinite interval of $\mathbb{R}$ , and a constant-sign periodic solution when I is a finite interval of $\mathbb{R}$ . The above problem is also extended to that on $\mathbb{R}$ $$u_{i} {\left( t \right)} = {\int_\mathbb{R} {g_{i} {\left( {t,s} \right)}f_{i} {\left( {s,u_{1} {\left( s \right)},u_{2} {\left( s \right)}, \cdots ,u_{n} {\left( s \right)}} \right)}ds\quad t \in \mathbb{R},\quad 1 \leqslant i \leqslant n.} }$$   相似文献   

18.
Let ${\mathcal{D}}_{n,k} $ be the family of linear subspaces of ?n given by all equations of the form $\varepsilon _1 x_{i_1 } = \varepsilon _2 x_{i_2 } = \cdot \cdot \cdot \varepsilon _k x_{i_k } ,$ for 1 ≤ < ? ? ? < i ki and $\left( {\varepsilon _1 ,...,\varepsilon _k } \right)\varepsilon \left\{ { + 1, - 1} \right\}^k $ Also let ${\mathcal{B}}_{n,k,h} $ be ${\mathcal{D}}_{n,k} $ enlarged by the subspaces $x_{j_1 } = x_{j_2 } = \cdot \cdot \cdot x_{j_h } = 0,$ for 1 ≤. The special cases ${\mathcal{B}}_{n,2,1} $ and ${\mathcal{D}}_{n,2} $ are well known as the reflection hyperplane arrangements corresponding to the Coxeter groups of type B nand D n respectively. In this paper we study combinatorial and topological properties of the intersection lattices of these subspace arrangements. Expressions for their Möbius functions and characteristic polynomials are derived. Lexicographic shellability is established in the case of ${\mathcal{B}}_{n,k,h,} 1 \leqslant h < k$ , which allows computation of the homology of its intersection lattice and the cohomology groups of the manifold $\begin{gathered} {\mathcal{D}}_{n,2} \\ M_{n,k,h,} = {\mathbb{R}}^n \backslash \bigcup {{\mathcal{B}}_{n,k,h,} } \\ \end{gathered} $ . For instance, it is shown that $H^d \left( {M_{n,k,k - 1} } \right)$ is torsion-free and is nonzero if and only if d = t(k ? 2) for some $t,0 \leqslant t \leqslant \left[ {{n \mathord{\left/ {\vphantom {n k}} \right. \kern-0em} k}} \right]$ . Torsion-free cohomology follows also for the complement in ?nof the complexification ${\mathcal{B}}_{n,k,h}^C ,1 \leqslant h < k$ .  相似文献   

19.
In this paper, we study noncommutative domains ${\mathbb{D}_f^\varphi(\mathcal{H}) \subset B(\mathcal{H})^n}$ generated by positive regular free holomorphic functions f and certain classes of n-tuples ${\varphi = (\varphi_1, \ldots, \varphi_n)}$ of formal power series in noncommutative indeterminates Z 1, . . . , Z n . Noncommutative Poisson transforms are employed to show that each abstract domain ${\mathbb{D}_f^\varphi}$ has a universal model consisting of multiplication operators (M Z1, . . . , M Z n ) acting on a Hilbert space of formal power series. We provide a Beurling type characterization of all joint invariant subspaces under M Z1, . . . , M Z n and show that all pure n-tuples of operators in ${\mathbb{D}_f^\varphi(\mathcal{H})}$ are compressions of ${M_{Z_1} \otimes I, \ldots, M_{Z_n} \otimes I}$ to their coinvariant subspaces. We show that the eigenvectors of ${M_{Z_1}^*, \ldots, M_{Z_n}^*}$ are precisely the noncommutative Poisson kernels ${\Gamma_\lambda}$ associated with the elements ${\lambda}$ of the scalar domain ${\mathbb{D}_{f,<}^\varphi(\mathbb{C}) \subset \mathbb{C}^n}$ . These are used to solve the Nevanlinna-Pick interpolation problem for the noncommutative Hardy algebra ${H^\infty(\mathbb{D}_f^\varphi)}$ . We introduce the characteristic function of an n-tuple ${T=(T_1, \ldots , T_n) \in \mathbb{D}_f^\varphi(\mathcal{H})}$ , present a model for pure n-tuples of operators in the noncommutative domain ${\mathbb{D}_f^\varphi(\mathcal{H})}$ in terms of characteristic functions, and show that the characteristic function is a complete unitary invariant for pure n-tuples of operators in ${\mathbb{D}_f^\varphi(\mathcal{H})}$ .  相似文献   

20.
Let φ be a primitive Maass cusp form and t φ (n) be its nth Fourier coefficient at the cusp infinity. In this short note, we are interested in the estimation of the sums ${\sum_{n \leq x}t_{\varphi}(n)}$ and ${\sum_{n \leq x}t_{\varphi}(n^2)}$ . We are able to improve the previous results by showing that for any ${\varepsilon > 0}$ $$\sum_{n \leq x}t_{\varphi}(n) \ll\, _{\varphi, \varepsilon} x^{\frac{1027}{2827} + \varepsilon} \quad {and}\quad\sum_{n \leq x}t_{\varphi}(n^2) \ll\,_{\varphi, \varepsilon} x^{\frac{489}{861} + \varepsilon}.$$   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号