首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Using a Thermecmastor-Z hot simulator, dynamic recrystallization (DRX) and static recrystallization (SRX) behavior of a Nb-microalloyed steel was investigated by single-hit compression tests and double-hit compression tests, respectively. The experimental results show that DRX will more easily occur at higher deformation temperature and lower strain rate. The deformation activation energy and stress exponent for the Nb-microalloyed steel are calculated to be 379.29 ± 23.56 kJ/mol and 5.76 in temperature range of 950 °C to 1100 °C by regression analysis, respectively. Furthermore, a semi-empirical model is developed to identify the peak stress and strain for DRX. It is found that SRX kinetics follows Avrami’s law, and the softening fraction predicted by the model agrees well with experimental results.  相似文献   

2.
A single fluid model of sheet/cloud cavitation is developed and applied to a NACA0015 hydrofoil. First, a cavity formation model is set up, based on a three-dimensional (3D) non-cavitation model of Navier–Stokes equations with a large eddy simulation (LES) scheme for weakly compressible flows. A fifth-order polynomial curve is adopted to describe the relationship between density coefficient ratio and pressure coefficient when cavitation occurs. The Navier–Stokes equations including cavitation bubble clusters are solved using the finite-volume approach with time-marching scheme, and MacCormack’s explicit-corrector scheme is adopted. Simulations are carried out in a 3D field acting on a hydrofoil NACA0015 at angles of attack 4°, 8° and 20°, with cavitation numbers σ = 1.0, 1.5 and 2.0, Re = 106, and a 360 × 63 × 29 meshing system. We study time-dependent sheet/cloud cavitation structures, caused by the interaction of viscous objects, such as vortices, and cavitation bubbles. At small angles of attack (4°), the sheet cavity is relatively stable just by oscillating in size at the accumulation stage; at 8° it has a tendency to break away from the upper foil section, with the cloud cavitation structure becoming apparent; at 20°, the flow separates fully from the leading edge of the hydrofoil, and the vortex cavitation occurs. Comparisons with other studies, carried out mainly in the context of flow patterns on which prior experiments and simulations were done, demonstrate the power of our model. Overall, it can snapshot the collapse of cloud cavitation, and allow a study of flow patterns and their instabilities, such as “crescent-shaped regions.”  相似文献   

3.
An alternative method is presented for solving the eigenvalue problem that governs the stability of Taylor–Couette and Dean flow. The eigenvalue problems defined by the two-point boundary value problems are converted into initial value problems by applying unit disturbance method developed by Harris and Reid [27] in 1964. Thereafter, the initial value problems are solved by differential transform method in series and the eigenvalues are computed by shooting technique. Critical wave number and Taylor number for Taylor–Couette flow are computed for a wide range of rotation ratio (μ), −4 ? μ ? 1 (first mode) and −2 ? μ ? 1 (second mode). The radial eigenfunction and cell patterns are presented for μ = −1, 0, 1. Also, we have computed critical wave number and Dean number successfully.  相似文献   

4.
In this paper we study the critical exponents of the Cauchy problem in Rn of the quasilinear singular parabolic equations: ut = div(|∇u|m − 1u) + ts|x|σup, with non-negative initial data. Here s ≥ 0, (n − 1)/(n + 1) < m < 1, p > 1 and σ > n(1 − m) − (1 + m + 2s). We prove that pc ≡ m + (1 + m + 2s + σ)/n > 1 is the critical exponent. That is, if 1 < p ≤ pc then every non-trivial solution blows up in finite time, but for p > pc, a small positive global solution exists.  相似文献   

5.
The rheological properties (flow curves and viscoelastic behavior) of injection molding suspensions of a plasma-processed AlN nanosized powder (nanopowder) in paraffin are investigated over a broad range of shear rates (0.07–1350 s–1). Two viscosity plateaux are observed on the flow curves and two values of the yield stress are obtained. The lower value of the strain amplitude (0.66%), exceeding the linearity limit of periodic shear, is restricted by the rheometer resolution. The ultrasound treatment and shear deformation of suspensions affect the structure of particle packing, which is responsible for the dependence of their rheological properties on the prehistory of mechanical actions.  相似文献   

6.
The micro-positioning Scott–Russell (SR) mechanism driven by a piezoelectric actuator (PA) is designed to magnify the displacement of the PA. The main feature of the SR mechanism is its straight-line output for a given input displacement. In this paper, the main objective is to propose a complete mathematical model, including the driving circuit, Bouc–Wen hysteresis and mechanical equation, to describe the system. In system identification, the real-coded genetic algorithm (RGA) is adopted to find the parameters of the SR mechanism and the PA. From the comparisons between numerically identified dynamic responses and experimental results, it is found that the error percentages are within −1.4% ∼ 1.7% for the system without offset and −3.85% ∼ 3.33% for the system with offset. It is concluded that the numerically identified parameters of the complete model are almost the same as those of the real system, and the RGA method is feasible for the identification of the SR mechanism driven by the PA.  相似文献   

7.
Nonlinear matrix equation Xs + AXtA = Q, where A, Q are n × n complex matrices with Q Hermitian positive definite, has widely applied background. In this paper, we consider the Hermitian positive definite solutions of this matrix equation with two cases: s ? 1, 0 < t ? 1 and 0 < s ? 1, t ? 1. We derive necessary conditions and sufficient conditions for the existence of Hermitian positive definite solutions for the matrix equation and obtain some properties of the solutions. We also propose iterative methods for obtaining the extremal Hermitian positive definite solution of the matrix equation. Finally, we give some numerical examples to show the efficiency of the proposed iterative methods.  相似文献   

8.
In this paper, the problem of the numerical approximation of a two-dimensional incompressible viscous fluid flow interacting with a flexible structure is considered. Due to high Reynolds numbers in the range 104 − 106 the turbulent character of the flow is considered and modelled with the aid of Reynolds equations coupled with the k − ω turbulence model. The structure motion is described by a system of ordinary differential equations for three degrees of freedom: vertical displacement, rotation and rotation of the aileron. The problem is discretized in space by the Galerkin Least-Squares stabilized finite element method and the computational domain is treated with the aid of Arbitrary Lagrangian Eulerian method.  相似文献   

9.
Consider the semilinear wave equations in dimension 3 with a defocusing and superconformal power-type nonlinearity and with data lying in the Hs×Hs−1Hs×Hs1 (s<1s<1) closure of smooth functions that are compactly supported inside a ball with fixed radius. We establish new bounds of the Sobolev norms of the solution. In particular, we prove that the HsHs norm of the high frequency component of the solution grows like T∼(1−s)2+T(1s)2+ in a neighborhood of s=1s=1. In order to do that, we perform an analysis in a neighborhood of the cone, using the finite speed of propagation, an almost Shatah–Struwe estimate [17], an almost conservation law and a low–high frequency decomposition  and .1  相似文献   

10.
Flow and thermal field in nanofluid is analyzed using single phase thermal dispersion model proposed by Xuan and Roetzel [Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer 43 (2000) 3701–3707]. The non-dimensional form of the transport equations involving the thermal dispersion effect is solved numerically using semi-explicit finite volume solver in a collocated grid. Heat transfer augmentation for copper–water nanofluid is estimated in a thermally driven two-dimensional cavity. The thermo-physical properties of nanofluid are calculated involving contributions due to the base fluid and nanoparticles. The flow and heat transfer process in the cavity is analyzed using different thermo-physical models for the nanofluid available in literature. The influence of controlling parameters on convective recirculation and heat transfer augmentation induced in buoyancy driven cavity is estimated in detail. The controlling parameters considered for this study are Grashof number (103 < Gr < 105), solid volume fraction (0 < ? < 0.2) and empirical shape factor (0.5 < n < 6). Simulations carried out with various thermo-physical models of the nanofluid show significant influence on thermal boundary layer thickness when the model incorporates the contribution of nanoparticles in the density as well as viscosity of nanofluid. Simulations incorporating the thermal dispersion model show increment in local thermal conductivity at locations with maximum velocity. The suspended particles increase the surface area and the heat transfer capacity of the fluid. As solid volume fraction increases, the effect is more pronounced. The average Nusselt number from the hot wall increases with the solid volume fraction. The boundary surface of nanoparticles and their chaotic movement greatly enhances the fluid heat conduction contribution. Considerable improvement in thermal conductivity is observed as a result of increase in the shape factor.  相似文献   

11.
12.
We employ variational techniques to study the existence and multiplicity of positive solutions of semilinear equations of the form − Δu = λh(x)H(u − a)uq + u2* − 1 in RN, where λ, a > 0 are parameters, h(x) is both nonnegative and integrable on RN, H is the Heaviside function, 2* is the critical Sobolev exponent, and 0 ≤ q < 2* − 1. We obtain existence, multiplicity and regularity of solutions by distinguishing the cases 0 ≤ q ≤ 1 and 1 < q < 2* − 1.  相似文献   

13.
Gas entrainment by plane liquid jets which plunge into a liquid pool is analyzed by numerical simulations. The numerical model is based on the equations of incompressible newtonian fluids flow. The two-phase flow problem is described with the volume-of-fluid method. The dynamic behaviour of the interface is characterized by two similarity parameters, the capillary number Ca = /σ and the property number Γ = σ(ρ/η4g)1/3 where u is the velocity, η the dynamic viscosity, σ the interface tension, ρ the density and g the gravitational constant. Numerical simulations are performed with the open source CFD code OpenFOAM. In the simulations the stability of the gas–liquid meniscus is tested for different sets of Ca and Γ. Critical values of Ca which indicate the beginning gas entrainment are deduced from the inspection of the simulation results. The findings of the numerical investigations agree well with corresponding experimental results.  相似文献   

14.
Oustaloup recursive approximation (ORA) is widely used to find a rational integer-order approximation for fractional-order integrators and differentiators of the form sv, v ∈ (−1, 1). In this method the lower bound, the upper bound and the order of approximation should be determined beforehand, which is currently performed by trial and error and may be inefficient in some cases. The aim of this paper is to provide efficient rules for determining the suitable value of these parameters when a fractional-order PID controller is used in a stable linear feedback system. Two numerical examples are also presented to confirm the effectiveness of the proposed formulas.  相似文献   

15.
Two perturbation estimates for maximal positive definite solutions of equations X + A*X−1A = Q and X − A*X−1A = Q are considered. These estimates are proved in [Hasanov et al., Improved perturbation Estimates for the Matrix Equations X ± A*X−1A = Q, Linear Algebra Appl. 379 (2004) 113-135]. We derive new perturbation estimates under weaker restrictions on coefficient matrices of the equations. The theoretical results are illustrated by numerical examples.  相似文献   

16.
A Hilbert space operator A ∈ B(H) is said to be p-quasi-hyponormal for some 0 < p ? 1, A ∈ p − QH, if A(∣A2p − ∣A2p)A ? 0. If H is infinite dimensional, then operators A ∈ p − QH are not supercyclic. Restricting ourselves to those A ∈ p − QH for which A−1(0) ⊆ A∗-1(0), A ∈ p − QH, a necessary and sufficient condition for the adjoint of a pure p − QH operator to be supercyclic is proved. Operators in p − QH satisfy Bishop’s property (β). Each A ∈ p − QH has the finite ascent property and the quasi-nilpotent part H0(A − λI) of A equals (A − λI)-1(0) for all complex numbers λ; hence f(A) satisfies Weyl’s theorem, and f(A) satisfies a-Weyl’s theorem, for all non-constant functions f which are analytic on a neighborhood of σ(A). It is proved that a Putnam-Fuglede type commutativity theorem holds for operators in p − QH.  相似文献   

17.
A constitutive model for aluminum alloys under hot working conditions is proposed. The elastic-viscoplastic model is implemented in a finite strain continuum mechanical framework. The model accounts for the interplay between dynamic recovery and recrystallization during hot working of aluminum alloys and central aspects of microstructure evolution such as grain/subgrain size and dislocation density. The proposed model is generic in the sense that it can be used for arbitrary aluminum alloys, but in order to demonstrate its capabilities, the model is calibrated to a newly developed AA6099 alloy in the present study. The model is thoroughly discussed and details on the numerical implementation as well as on the calibration of the model against experimental data are provided.  相似文献   

18.
For the Hadamard product A ° A−1 of an M-matrix A and its inverse A−1, we give new lower bounds for the minimum eigenvalue of A ° A−1. These bounds are strong enough to prove the conjecture of Fiedler and Markham [An inequality for the Hadamard product of an M-matrix and inverse M-matrix, Linear Algebra Appl. 101 (1988) 1-8].  相似文献   

19.
We prove an improvement of flatness result for nonlocal minimal surfaces which is independent of the fractional parameter s   when s→1s1.  相似文献   

20.
Numerical methods for systems of weakly singular Volterra integral equations are rarely considered in the literature, especially if the equations involve non-linear dependencies between unknowns and their integrals. In the present work an adaptive Huber method for such systems is proposed, by extending the method previously formulated for single weakly singular second kind Volterra equations. The method is tested on example systems of integral equations involving integrals with kernels K(tτ) = (t − τ)−1/2, K(tτ) = exp[−λ(t − τ)](t − τ)−1/2 (where λ > 0), and K(tτ) = 1. The magnitude of the errors, and practical accuracy orders, observed for IE systems, are comparable to those for single IEs. In cases when the solution vector is not differentiable at t = 0, the estimation of errors at t = 0 is found somewhat less reliable for IE systems, than it was for single IEs. The stability of the IE systems solved appears to be sufficient, in practice, for the numerical stability of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号