首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The far-infrared and middle-infrared emission spectra of deuterated water vapour were measured at temperatures 1370, 1520, and 1940 K in the ranges 320-860 and 1750-3400 cm−1. The measurements were performed in an alumina cell with an effective length of hot gas of about 50 cm. More than 3550 new measured lines for the D216O molecule corresponding to transitions from highly excited rotational levels of the (0 2 0), (1 0 0), and (0 0 1) vibrational states are reported. These new lines correspond to rotational states with higher values of the rotational quantum numbers compared to previously published determinations: Jmax = 29 and Ka(max) = 22 for the (0 2 0) state, Jmax = 29 and Ka(max) = 25 for the (1 0 0) state, and Jmax = 30 and Ka(max) = 23 for the (0 0 1) state. The extended set of 1987 experimental rotational energy levels for the (0 2 0), (1 0 0), and (0 0 1) vibration states including all previously available data has been determined. For the data reduction we used the generating function model. The root mean square (RMS) deviation between observed and calculated values is 0.004 cm−1 for 1952 rovibrational levels of all three vibration states. A comparison of the observed energy levels with the best available values from the literature and with the global predictions from molecular electronic potential energy surfaces of water isotopic species [H. Partridge, D.W. Schwenke, J. Chem. Phys. 106 (1997) 4618] is discussed. The latter confirms a good consistency of mass-dependent DBOC corrections in the PS potential function with new experimental rovibrational data.  相似文献   

2.
The room-temperature rotational spectrum of fluorobenzene was studied in the frequency region 167-318 GHz. Rotational transitions were assigned and measured in the ground vibrational state, and all six excited vibrational states with energies below 600 cm−1, i.e., v11 = 1, v11 = 2, v18b = 1, v16a = 1, v16b = 1, and v6a = 1. Accurate quartic-level spectroscopic constants were determined for all states, allowing spectral predictions well into the submillimeter region. The states v18b = 1 and v16a = 1 were found to be connected by a strong Coriolis interaction, which allowed precise determination of their energy separation, ΔE = 7.455088(3) cm−1. Unambiguous assignment of vibrational modes was made on the basis of the calculated inertial defect and nuclear spin statistical weights. Rotational constants for the 13C4 isotopomer have also been redetermined and two new least-squares determinations of the geometry of fluorobenzene, r0 and are reported.  相似文献   

3.
The far-infrared emission spectra of deuterated water vapour were measured at different temperatures (1370, 1520, and 1950 K) in the range 320-860 cm−1 at a resolution of 0.0055 cm−1. The measurements were performed in an alumina cell with an effective length of hot gas of about 50 cm. More than 1150 new measured lines for the D216O molecule corresponding to transitions between highly excited rotational levels of the (0 0 0) and (0 1 0) vibrational states are reported. These new lines correspond to rotational states with higher values of the rotational quantum numbers compared to previously published determinations: Jmax=26 and for the (0 0 0) ← (0 0 0) band, Jmax=25 and for the (0 1 0) ← (0 1 0) band, and Jmax=26 and for the (0 1 0) ← (0 0 0) band. The estimated accuracy of the measured line positions is 0.0005 cm−1. To our knowledge no experimentally measured rotational transitions for D216O within an excited vibrational state have been available in the literature so far. An extended set of experimental rotational energy levels for (0 0 0) and (0 1 0) vibration states including all previously available data has been determined. For the data reduction we used the generating function model. The root mean square (RMS) deviation between observed and calculated values is 0.0012 cm−1 for 692 rotational levels of the (0 0 0) state and 0.0010 cm−1 for 639 rotational levels of the (0 1 0) vibrational state. A comparison of the observed energy levels with the best available values from the literature and with the global predictions from molecular electronic potential energy surface [J. Chem. Phys. 106 (1997) 4618] for the (0 0 0) and (0 1 0) states is discussed.  相似文献   

4.
The microwave spectra of the gauche conformer of perfluoro-n-butane, n-C4F10, of perfluoro-iso-butane, (CF3)3CF, and of tris(trifluoromethyl)methane, (CF3)3CH, have been observed and assigned. The rotational and centrifugal distortion constants for gauche n-C4F10 are: A = 1058.11750(7) MHz, B = 617.6832(1) MHz, C = 552.18794(1) MHz, ΔJ = 0.0257(5) kHz, δJ = 0.0052(3) kHz. A C-C-C-C dihedral angle, ω, of ∼55° has been determined. These values agree well with those obtained from a coupled cluster (CCSD/cc-PVTZ) calculation. The rotational and centrifugal distortion constants for iso-C4F10 and iso-C4HF9 are: Bo = 816.4519(4) MHz, DJ = 0.023(2) kHz, and Bo = 903.6985(25) MHz, DJ = 0.043(4) kHz, respectively. The dipole moment of iso-C4F10 and iso-C4HF9 have been measured and found to be 0.0338(8) and 1.69(9) D, respectively.  相似文献   

5.
In this paper, we report measured Lorentz N2-broadening and N2-induced pressure-shift coefficients of CH3D in the ν2 fundamental band using a multispectrum fitting technique. These measurements were made by analyzing 11 laboratory absorption spectra recorded at 0.0056 cm−1 resolution using the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak, Arizona. The spectra were obtained using two absorption cells with path lengths of 10.2 and 25 cm. The total sample pressures ranged from 0.98 to 402.25 Torr with CH3D volume mixing ratios of 0.01 in nitrogen. We have been able to determine the N2 pressure-broadening coefficients of 368 ν2 transitions with quantum numbers as high as J″ = 20 and K = 16, where K″ = K′ ≡ K (for a parallel band). The measured N2-broadening coefficients range from 0.0248 to 0.0742 cm−1 atm−1 at 296 K. All the measured pressure-shifts are negative. The reported N2-induced pressure-shift coefficients vary from about −0.0003 to −0.0094 cm−1 atm−1. We have examined the dependence of the measured broadening and shift parameters on the J″, and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m = −J″, J″, and J″ + 1 in the QP-, QQ-, and QR-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 4.7%. The N2-broadening and pressure-shift coefficients were calculated on the basis of a semiclassical model of interacting linear molecules performed by considering in addition to the electrostatic contributions the atom-atom Lennard-Jones potential. The theoretical results of the broadening coefficients are in good overall agreement with the experimental data (8.7%). The N2-pressure shifts whose vibrational contribution is derived from parameters fitted in the QQ-branch of self-induced shifts of CH3D, are also in reasonable agreement with the scattered experimental data (20% in most cases).  相似文献   

6.
We present the experimental demonstration of a novel, efficient, and vibrational selective technique to prepare population in vibrational level v″ = 1 using the stimulated Raman pumping. Photoacoustic Raman signal has been studied in non-radiative transitions in the molecule H2 (v″ = 0) and (v″ = 1). The population fraction in the v″ = 1 level can be estimated by using combined photoacoustic Raman spectroscopy with stimulated Raman pumping for the first time.  相似文献   

7.
Pressure induced line shift and line mixing parameters have been measured for 66 rovibrational lines in the ν4 band and for 10 lines in the 2ν2 band of NH3 perturbed by H2 and Ar at room temperature (T = 296 K). These lines with J values ranging from 2 to 10 are located in the spectral range 1450-1600 cm−1. Experiments were made with a high-resolution Fourier transform spectrometer. The line shifts and line mixing parameters have been derived from the non-linear least-square multi-pressure fitting technique. The shift coefficients are compared with those calculated from the Robert-Bonamy formalism (RB). The results are generally in satisfactory agreement with the experimental data.  相似文献   

8.
The rotational spectrum of the normal isotopic species of the HCF3-CO2 weakly bound complex has been measured by Fourier-transform microwave (FTMW) spectroscopy. All transitions are split into A and E states by internal rotation of the trifluoromethane subunit. A global fit of these states gives rotational constants that are consistent with a structure predicted by an MP2/6-311++G(2d,2p) ab initio calculation in which the axes of the monomers are coplanar, with the hydrogen atom of the trifluoromethane angled toward one of the oxygen atoms of the CO2. Measured dipole moment components (μa = 0.431(6) D, μb = 0, μc = 1.436(6) D, μtotal = 1.499(6) D) confirm the ab initio prediction of an ac plane of symmetry; however, the very near-prolate nature of the complex (κ = −0.997), combined with the relatively high barrier to internal rotation (∼30 cm−1) leads to asymmetry splittings and internal rotation splittings of similar magnitude, resulting in the observation of dipole forbidden b-type E-state transitions in addition to the expected a- and c-type lines. Although this effect has been observed previously in several monomer spectra, this appears to be one of few examples for a weakly bound complex.  相似文献   

9.
The study of vibration resonance physics in propyne is based on experimental measurements of about 600 new rotational transitions between 495-590 and 700-760 GHz in excited vibrational levels v5 = 1, v8 = 1, v10 = 3 and v9 = v10 = 1 with vibrational energies around 1000 cm−1. The limits to the assignments and analysis were imposed by as yet unresolved anharmonic resonances with the states of the next higher polyad of levels lying above 1200 cm−1, which affect the rotational states involved in transitions that would be measurable with non-vanishing intensities. Vibration-rotation spectra pertaining to the levels in question were studied in the regions 880-1150 cm−1 (the ν5 and ν8 fundamental bands), 550-750 cm−1 (the v9 = v10 = 1 ← v10 = 1 hot bands) and 250-400 cm−1 (the v10 = 3 ← v10 = 2 “superhot” bands). A simultaneous least-squares fit of both types of data provides their reliable but in the case of accurate rotational data not always fully quantitative reproduction.  相似文献   

10.
The infrared spectrum of the PD3 molecule has been measured in the region of the first stretching overtone bands on a Fourier transform spectrometer with a resolution of 0.0068 cm−1 and analyzed for the first time. More than 800 transitions with Jmax=15 have been assigned to the bands 2ν1 and ν1+ν3. An effective Hamiltonian was used which takes into account both the presence of resonance interactions between the states (2 0 0 0) and (1 0 1 0), and interactions of these with the third stretching vibrational state of the v=2 polyad, (0 0 2 0). A set of 44 spectroscopic parameters is obtained from the fit. This reproduces the 305 initial “experimental” upper rovibrational energies with an rms=0.0015 cm−1.  相似文献   

11.
We report measured Lorentz O2-broadening and O2-induced pressure-shift coefficients of CH3D in the ν2 fundamental band. Using a multispectrum fitting technique we have analyzed 11 laboratory absorption spectra recorded at 0.011 cm−1 resolution using the McMath-Pierce Fourier transform spectrometer, Kitt Peak, Arizona. Two absorption cells with path lengths of 10.2 and 25 cm were used to record the spectra. The total sample pressures ranged from 0.98 to 339.85 Torr with CH3D volume mixing ratios of 0.012 in oxygen. We report measurements for O2 pressure-broadening coefficients of 320 ν2 transitions with quantum numbers as high as J″ = 17 and K = 14, where K″ = K′ ≡ K (for a parallel band). The measured O2-broadening coefficients range from 0.0153 to 0.0645 cm−1 atm−1 at 296 K. All the measured pressure-shifts are negative. The reported O2-induced pressure-shift coefficients vary from about −0.0017 to −0.0068 cm−1 atm−1. We have examined the dependence of the measured broadening and shift parameters on the J″, and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m = −J″, J″, and J″ + 1 in the QP-, QQ-, and QR-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 4.4%. The O2-broadening and pressure shift coefficients were calculated on the basis of a semiclassical model of interacting linear molecules performed by considering in addition to the electrostatic contributions the atom-atom Lennard-Jones potential. The theoretical results of the broadening coefficients are generally larger than the experimental data. Using for the trajectory model an isotropic Lennard-Jones potential derived from molecular parameters instead of the spherical average of the atom-atom model, a better agreement is obtained with these data, especially for |m| ? 12 values (11.3% for the first calculation and 8.1% for the second calculation). The O2-pressure shifts whose vibrational contribution are either derived from parameters fitted in the QQ-branch of self-induced shifts of CH3D or those obtained from pressure shifts induced by Xe in the ν3 band of CH3D are in reasonable agreement with the scattered experimental data (17.0% for the first calculation and 18.7% for the second calculation).  相似文献   

12.
Laser induced fluorescence spectra of HoS have been obtained using a Broida oven and a ring dye laser. Dispersed fluorescence spectra showed transitions from a common upper state, A[14.79]8.5 to the v = 0 and 1 vibrational levels of three low lying states, labelled X8.5, W[0.25]7.5 and V[0.98]7.5 (the states are labelled [10−3T0]Ω according to their energy and Ω assignment). High resolution excitation spectra were obtained for all six transitions and a rotational analysis yielded the following principal constants, in cm−1, for the X, W and V states, respectively: T0 = 0, 251.8713(31), 980.6969(37); Be = 0.121903(42), 0.121729(37), 0.122561(34); ΔG1/2 = 463.8811(46), 462.9411(45), 461.2084(127). For the A state, T0 = 14794.6987(28) cm−1 and B0 = 0.112596(29) cm−1. The three low lying states are shown to arise from the Ho2+[4f10(5I8)6s]S2− configuration in accord with Ligand Field Theory predictions. The atomic origin of each of the three low lying electronic states was determined from the observed resolved hyperfine structure.  相似文献   

13.
In this paper, we report measured Lorentz self-broadening and self-induced pressure-shift coefficients of 12CH3D in the ν2 fundamental band (ν0 ≈ 2200 cm−1). The multispectrum fitting technique allowed us to analyze simultaneously seven self-broadened absorption spectra. All spectra were recorded at the McMath-Pierce Fourier transform spectrometer of the National Solar Observatory (NSO) on Kitt Peak, AZ with an unapodized resolution of 0.0056 cm−1. Low-pressure (0.98-2.95 Torr) as well as high-pressure (17.5-303 Torr) spectra of 12C-enriched CH3D were recorded at room temperature to determine the pressure-broadening coefficients of 408 ν2 transitions with quantum numbers as high as J″ = 21 and K = 18, where K″ = K′ ≡ K (for a parallel band). The measured self-broadening coefficients range from 0.0349 to 0.0896 cm−1 atm−1 at 296 K. All the measured pressure-shifts are negative. The reported pressure-induced self-shift coefficients vary from about −0.004 to −0.008 cm−1 atm−1. We have examined the dependence of the measured broadening and shift parameters on the J″, and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m = −J″, J″, and J″ + 1 in the QP-, QQ-, and QR-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 3.6%. A semiclassical theory based upon the Robert-Bonamy formalism of interacting linear molecules has been used to calculate these self-broadening and self-induced pressure-shift coefficients. In addition to the electrostatic interactions involving the octopole and hexadecapole moments of CH3D, the intermolecular potential includes also an atom-atom Lennard-Jones model. For low K (K ? 3) with |m| ? 8 the theoretical results of the broadening coefficients are in overall good agreement (3.0%) with the experimental data. For transitions with K approaching |m|, they are generally significantly underestimated (8.8%). The theoretical self-induced pressure shifts, whose vibrational contribution is derived from results in the QQ-branch, are generally smaller in magnitude than the experimental data in the QP-, and QR-branches (15.2%).  相似文献   

14.
The rotational spectrum of HClO4 has been observed in selected regions between 51.7 and 870 GHz. The molecule is a near spherical rotor with a moderately low barrier to internal rotation. The spectrum is characterized by strong μa, R-branch groupings with B + C = 5276.78 MHz. Although there are no E torsional states, the R-branches show three distinct groups of lines. There is a relatively tight cluster of symmetric rotor like transitions with K = 3n, a rather regular progression of transitions with K = 3n + 2 to high frequency and a less regular group of transitions with K = 3n + 1 to low frequency. Because the molecule is nearly spherical, the energy as a function of K is dominated by the K dependent solutions of the Mathieu equation. This unusual energy level distribution gives rise to numerous anomalous splittings and shifts due to avoided crossings within the K stacks as well as widely scattered μb transitions. The fitting procedure will be described and the effective parameters will be presented. Rotational transitions of excited torsional states at and above the top of the barrier and the vt = 2-0 far infrared spectrum have been assigned. The dipole moment and the quadrupole coupling constants have been determined. Structural implications will be discussed.  相似文献   

15.
A high resolution (0.0018 cm−1) Fourier transform instrument has been used to record the spectrum of an enriched 34S (95.3%) sample of sulfur dioxide. A thorough analysis of the ν2, 2ν2 − ν2, ν1, ν1 + ν2 − ν2, ν3, ν2 + ν3 − ν2, ν1 + ν2 and ν2 + ν3 bands has been carried out leading to a large set of assigned lines. From these lines ground state combination differences were obtained and fit together with the existing microwave, millimeter, and terahertz rotational lines. An improved set of ground state rotational constants were obtained. Next, the upper state rotational levels were fit. For the (0 1 0), (1 1 0) and (0 1 1) states, a simple Watson-type Hamiltonian sufficed. However, it was necessary to include explicitly interacting terms in the Hamiltonian matrix in order to fit the rotational levels of the (0 2 0), (1 0 0) and (1 0 1) states to within their experimental accuracy. More explicitly, it was necessary to use a ΔK = 2 term to model the Fermi interaction between the (0 2 0) and (1 0 0) levels and a ΔK = 3 term to model the Coriolis interaction between the (1 0 0) and (0 0 1) levels. Precise Hamiltonian constants were derived for the (0 0 0), (0 1 0), (1 0 0), (0 0 1), (0 2 0), (1 1 0) and (0 1 1) vibrational states.  相似文献   

16.
High-resolution Fourier-transform spectra of the D2S molecule in the regions of polyads of interacting vibrational states v = 3/2, 2, 5/2, 3 and 7/2 (v = v1 + v2/2 + v3) were recorded for the first time with a Bruker IFS 120 Fourier-transform interferometer and analysed. A global fit of all currently available rotation-vibration energies has been made for 22 vibrational states of the D2S molecule. The resulting set of 231 parameters reproduces all the initial experimental data (about 3670 vibration-rotation energies which correspond to more than 9700 ro-vibrational transitions with Jmax = 25) with accuracies close to the experimental uncertainties.  相似文献   

17.
Approximately 150 pure rotational transitions each have been recorded for SO2, v2 = 0 and 1, in selected frequency regions up to 2 THz. The J and Ka quantum numbers reach very high values: 92 and 23, respectively, for the ground vibrational state and 81 and 21, respectively, for the first excited bending state. The highest levels accessed are almost 3000 cm−1 above ground. The relative experimental uncertainties Δν/ν are about 10−8 for several medium to strong, isolated lines, and generally better than 2.5 × 10−7. Improved spectroscopic parameters have been obtained for both states, particularly for the excited bending state. In fact, the accuracies with which the energy levels of the v2 = 1 state are known depend essentially only on the accuracy with which the vibrational spacing is known from infrared spectroscopy.  相似文献   

18.
The absorption spectrum of ozone, 16O3, has been recorded in the 5903-5960 cm−1 region by high sensitivity CW-cavity ring down spectroscopy (αmin ∼ 5 × 10−10 cm−1). The ν1 + 3ν2 + 3ν3 and 4ν1 + ν2 + ν3 A-type bands centred at 5919.15 and 5947.07 cm−1 were newly observed. A set of 173 and 168 energy levels could be experimentally determined for the (1 3 3) and (4 1 1) states, respectively. Except for a few Ka = 5 levels of the (4 1 1) state, the rotational structure of the two states was found mostly unperturbed. The spectroscopic parameters were determined from a fit of the corresponding line positions by considering the (1 3 3) and (4 1 1) states as isolated. The determined effective Hamiltonian and transition moment operators were used to generate a list of 785 transitions given as Supplementary Material.  相似文献   

19.
The emission spectrum of TaCl has been recorded at high resolution in the 3000-35 000 cm−1 region using a Fourier transform spectrometer. The bands were observed by microwave excitation of a mixture of TaCl5 vapor and 3.0 Torr of He. Several TaCl bands have also been recorded using the laser ablation/molecular beam source at the University of New Brunswick. A rotational analysis of a number of bands has been obtained and the majority of the stronger bands have been classified into three groups with different lower state spectroscopic constants. The three lower states have been identified as having Ω″ = 0+, Ω″ = 2, and (tentatively) Ω″ = 3. The Ω″ = 0+ and Ω″ = 2 states are very close in energy and one of these two states is the ground state of TaCl.  相似文献   

20.
The desorption of NO molecules from a thick C60 film is reported. A thermal desorption spectrum indicates two adsorption sites with binding energies of Eb = 0.30 eV and 0.55 eV. For laser desorption the fullerene surface is exposed to NO and excited by 7 ns UV laser pulses. Desorbing NO molecules are recorded state selectively as well as time resolved. The time-of-flight measurement indicates three different desorption pathways. A fast channel shows rovibronic temperatures of Trot(v″ = 0) = 370 K, Trot(v″ = 1) = 390 K and Tvib = 610 K as well as strong rotational-translational coupling. The desorption yield for the fast channel increases linearly with pulse energy with a desorption cross section of σ = (5.1 ± 0.9) × 10−17 cm2. Dominating the signal for small J″ values is a slow channel with low rotational and translational temperatures of about 110 K. We assign this peak to a laser-induced thermal desorption. For large pump-probe delays the data deviate from the Maxwellian flux distribution and a third channel appears with extremely late arrival times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号