首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellulose was dissolved in 6 wt % NaOH/4 wt % urea aqueous solution, which was proven by a 13C NMR spectrum to be a direct solvent of cellulose rather than a derivative aqueous solution system. Dilute solution behavior of cellulose in a NaOH/urea aqueous solution system was examined by laser light scattering and viscometry. The Mark–Houwink equation for cellulose in 6 wt % NaOH/4 wt % urea aqueous solution at 25 °C was [η] = 2.45 × 10?2 weight‐average molecular weight (Mw)0.815 (mL g?1) in the Mw region from 3.2 × 104 to 12.9 × 104. The persistence length (q), molar mass per unit contour length (ML), and characteristic ratio (C) of cellulose in the dilute solution were 6.0 nm, 350 nm?1, and 20.9, respectively, which agreed with the Yamakawa–Fujii theory of the wormlike chain. The results indicated that the cellulose molecules exist as semiflexible chains in the aqueous solution and were more extended than in cadoxen. This work provided a novel, simple, and nonpollution solvent system that can be used to investigate the dilute solution properties and molecular weight of cellulose. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 347–353, 2004  相似文献   

2.
Cellulose was dissolved rapidly in 4.6 wt % LiOH/15 wt % urea aqueous solution and precooled to –10 °C to create a colorless transparent solution. 13C‐NMR spectrum proved that it is a direct solvent for cellulose rather than a derivative aqueous solution system. The result from transmission electron microscope showed a good dispersion of the cellulose molecules in the dilute solution at molecular level. Weight‐average molecular weight (Mw), root mean square radius of gyration (〈s2z1/2), and intrinsic viscosity ([η]) of cellulose in LiOH/urea aqueous solution were examined with laser light scattering and viscometry. The Mark–Houwink equation for cellulose in 4.6 wt % LiOH/15 wt % urea aqueous solution was established to be [η] = 3.72 × 10?2 M in the Mw region from 2.7 × 104 to 4.12 × 105. The persistence length (q), molar mass per unit contour length (ML), and characteristic ratio (C) of cellulose in the dilute solution were given as 6.1 nm, 358 nm?1, and 20.8, respectively. The experimental data of the molecular parameters of cellulose agreed with the Yamakawa–Fujii theory of the worm‐like chain, indicating that the LiOH/urea aqueous solution was a desirable solvent system of cellulose. The results revealed that the cellulose exists as semistiff‐chains in the LiOH/urea aqueous solution. The cellulose solution was stable during measurement and storage stage. This work provided a new colorless, easy‐to‐prepare, and nontoxic solvent system that can be used with facilities to investigate the chain conformation and molecular weight of cellulose. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3093–3101, 2006  相似文献   

3.
Dissolution of cellulose having different viscosity-average molecular weight (M η ) in 7 wt%NaOH/12 wt%urea aqueous solution at temperature from 60 to −12.6°C was investigated with optical microscope, viscosity measurements and wide X-ray diffraction (WXRD). The solubility (Sa) of cellulose in NaOH/urea aqueous solution strongly depended on the temperature, and molecular weight. Their Sa values increased with a decrease in temperature, and cellulose having M η below 10.0 × 104 could be dissolved completely in NaOH/urea aqueous solution pre-cooled to −12.6°C. The activation energy of dissolution (Ea,s) of the cellulose dissolution was a negative value, suggesting that the cellulose solution state had lower enthalpy than the solid cellulose. The cellulose concentration in this system increased with a decrease of M η to achieve about 8 wt% for M η of 3.1 × 104. Moreover, cellulose having 12.7 × 104 could be dissolved completely in the solvent pre-cooled to −12.6°C as its crystallinity (χ c) decreased from 0.62 to 0.53. We could improve the solubility of cellulose in NaOH/urea aqueous system by changing M η , χ c and temperature. In addition, the zero-shear viscosity (η 0 ) at 0°C for the 4 wt% cellulose solution increased rapidly with an increase of M η , as a result of the enhancement of the aggregation and entanglement for the relatively long chains.  相似文献   

4.
Four solvents of cellulose have been studied by using 13C-NMR spectroscopy. All these solvents, N-methyl morpholine-N-oxide, methylamine, hydrazine, and paraformaldehyde (PF), contained dimethyl sulfoxide (DMSO) as a cosolvent. Oligomers of cellulose of DP = 10 soluble in hot DMSO have been used as model compounds. 13C chemical shifts and line shapes show that three of the mentioned solvents are “true solvents” of cellulose. On the other hand, dissolution of cellulose in DMSO-PF system occurs by the formation of a statistical derivative of cellulose. Enriched 13C bacterial cellulose on C-1 and C-6 positions have been used to identify the 13C positions mainly in DMSO-N-methyl morpholine-N-oxide system. This solvent has been found to be degradative for the macromolecule when the solution is kept at 100°C over a long period. Viscosity measurements show a reduction of the molecular weight in these conditions. Polarimetry indicates that no glucose is present in solution and hence there is a statistical break of the chain. Enriched cellulose solution in DMSO–N-methyl morpholine-N-oxide has been also used for relaxation time (T1) determination both of the solvent and of the enriched carbons of the polymer. Nuclear Overhauser enhancement (NOE) was found to be 1.8 for C-1 and 2.1 for C-6 showing that relaxation phenomenon is not purely dipolar. T1 values of 97 and 65 msec are found for C-1 and C-6 of cellulose, in good agreement with the values known for polysaccharides. Determination of T1 for the different carbon atoms of the solvent DMSO-N-methyl morpholine-N-oxide with and without cellulose shows a large reduction of T1 for N-methyl morpholine-N-oxide molecule. This denotes a slower molecular motion of this molecule and a preferential interaction with the cellulose macromolecule.  相似文献   

5.
In this article, solid-state 13C CP/MAS NMR combined with extended Hückel charges was applied to investigate the interaction between urea and cellulose in the NaOH/urea aqueous solvent system. Direct experimental evidence was provided to support the interaction between urea and cellulose. The solid-state 13C CP/MAS NMR results revealed that complicated complexes are formed by urea, NaOH and cellulose in the solution. Excess urea exists in a free state, which explains why 7 wt% NaOH/12 wt% urea/81 wt% H2O is the optimal ratio selection to dissolve cellulose. Based on the correlation in which the computed extended Hückel charge on carbon of urea is approximately inversely proportional to its 13C chemical shift, a possible interaction model of cellulose, NaOH and urea was proposed. Interactions exist between any two of urea, NaOH and cellulose, which results in the cellulose chain being surrounded by NaOH and urea molecules. NaOH and urea may be in the same surface layer of cellulose chains.  相似文献   

6.
Dissolution of cellulose is the key challenge in its applications. It has been discovered that spruce cellulose with high molecular weight (4.10 × 105 g mol?1) can be dissolved in 64 wt% H2SO4 aqueous solution at low temperature within 2 min, and the cellulose concentration in solution can reach as high as 5 % (w/v). FT-IR spectra and XRD spectra proved that it is a direct solvent for cellulose rather than a derivative aqueous solution system. The cold H2SO4 aqueous solution broke the hydrogen bonds among cellulose molecules and the low temperature dramatically slowed down the hydrolysis, which led to the dissolution of cellulose. The resultant cellulose solution was relatively stable, and the molecular weight of cellulose only slightly decreased after storage at ?20 °C for 1 h. Due to the high molecular weight of cellulose, cellulose solution could form regenerated films with good mechanical properties and transparency at low concentration (2 % w/v). This work has not only provided the new evidence of cellulose dissolution which facilitated the development of cellulose solvent, but also suggested a convenient way to directly transfer cellulose with high molecular weight into materials without structure modifications.  相似文献   

7.
Cellulose films were successfully prepared from NaOH/urea/zincate aqueous solution pre-cooled to −13 °C by coagulating with 5% H2SO4. The cellulose solution and regenerated cellulose films were characterized with dynamic rheology, ultraviolet–visible spectroscope, scanning electron microscopy, wide angle X-ray diffraction, Fourier transform infrared (FT-IR) spectrometer, thermogravimetry and tensile testing. The results indicated that at higher temperature (above 65 °C) or lower temperature (below −10 °C) or for longer storage time, gels could form in the cellulose dope. However, the cellulose solution remained a liquid state for a long time at 0–10 °C. Moreover, there was an irreversible gelation in the cellulose solution system. The films with cellulose II exhibited better optical transmittance, high thermal stability and tensile strength than that prepared by NaOH/urea aqueous solution without zincate. Therefore, the addition of zincate in the NaOH/urea aqueous system could enhance the cellulose solubility and improve the structure and properties of the regenerated cellulose films.  相似文献   

8.
Cellulose multi-filament fibers have been spun successfully on a pilot plant scale, from a cellulose dope in 7 wt% NaOH/12 wt% urea aqueous solution pre-cooled to −12 °C. Coagulation was accomplished in a bath with 10 wt% H2SO4/12 wt% Na2SO4 and then 5 wt% H2SO4 aqueous solution. By using different finishing oil, including H2O, 4% glycerol aqueous solution, 2% polyvinyl alcohol (PVA) aqueous solution, 2% polyethylene glycol octyl phenylether (OP) aqueous solution, mobol and 2%glycerol/1%PVA/1%OP aqueous solution (PGO), we prepared six kinds of the cellulose multi-filaments, with tensile strength of 1.7–2.1 cN/dtex. Their structure and properties were investigated with scanning electron microscope (SEM), 13C NMR solid state, wide-angle X-ray diffraction (WAXD) and tensile testing. The cellulose fibers treated with PGO possessed higher mechanical properties and better surface structure than others. Interestingly, although the orientation of the cellulose multi-filaments is relatively low, the tensile strength of the single-fiber was similar to that of Lyocell. It was worth noting that the dyeability of the multi-filament fibers was superior to viscose rayon.  相似文献   

9.
Interaction between poly(riboadenylic acid) (poly(A)) and Cu2+ in neutral aqueous (D2O) solution has been studied by 1H, 31P, and 13C nuclear magnetic resonance. electron-nuclear hyperfine coupling constant and apparent electron-nuclear distances were determined by measurement of T1 and T2 values as a function of temperature. The apparent distance from Cu2+ to H(2), H(8), H(1′), and phosphorus nuclei were estimated to be 4.1, 3.7, 5.1, and 3.1 Å from these results. Cu2+ was found to coordinate directly to the phosphate groups of poly(A) (Type I complex). Simultaneously there are bindings of Cu2+ directly to one of the nitrogen atoms of adenine ring, mainly to N(7) (Type II complex) and either N(1) or N(3) (Type III complex).  相似文献   

10.
NaOH/urea aqueous solution is a novel, green solvent for cellulose. To explain why cellulose just be dissolved in this solvent under ?13 °C, we studied and discussed the dissolving process of cellobiose in water, urea solution, NaOH solution and NaOH/urea aqueous solution. Dissolving cellobiose in water and the urea solution absorb heat, which is an entropy-driven process. Dissolving cellobiose in NaOH solution and mixed NaOH/urea solution is exothermic, which is an enthalpy-driven process. OH? plays an important role in the dissolving process by forming a hydrogen-bonding complex. From the thermodynamic point of view, negative entropy can well interpret why cellulose must be dissolved in cold NaOH/urea aqueous solution.  相似文献   

11.
O‐(2,3‐dihydroxypropyl) cellulose (DHPC) samples were synthesized by etherification of cellulose with glycidol (GLY) in a NaOH/urea aqueous solution system under different reaction conditions, so that they had different degrees of ether substitution (DS) in both the overall and regional distributions. The characterization was made by NMR spectroscopy in order to clarify the effects of the molar ratio of in‐fed GLY to anhydroglucose unit and of the reaction temperature not only on the total and regional DSs but also on the molar substitution (MSdhp) for the multireactive dihydroxypropyl group. The evaluation of MSdhp was performed after complete propionylation of each DHPC sample. Determination of molecular weights was also conducted on the propionylated DHPCs by GPC analysis. As a preliminary extension, butyralization of DHPC was undertaken in aqueous solution by using p‐toluenesulfonic acid as catalyst together with butyraldehyde (BuA). Two‐dimensional NMR (1H–13C gHSQC) spectra measurements revealed that the products contained butyral groups, owing to dehydration‐cyclization between the BuA‐carbonyl and the duplicate hydroxyls in the side chain of DHPC. Such butyral derivatives of cellulose are expected to be a promising functional material parallel or superior to poly(vinyl butyral) available for safety glass interlayers, etc. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3590–3597  相似文献   

12.
Fluorinated Metal-Organic Frameworks (MOFs), comprising a wheel-shaped ligand with geminal rotating fluorine atoms, produced benchmark mobility of correlated dipolar rotors at 2 K, with practically null activation energy (Ea=17 cal mol−1). 1H T1 NMR revealed multiple relaxation phenomena due to the exchange among correlated dipole-rotor configurations. Synchrotron radiation X-ray diffraction at 4 K, Density Functional Theory, Molecular Dynamics and phonon calculations showed the fluid landscape and pointed out a cascade mechanism converting dipole configurations into each other. Gas accessibility, shown by hyperpolarized-Xe NMR, allowed for chemical stimuli intervention: CO2 triggered dipole reorientation, reducing their collective dynamics and stimulating a dipole configuration change in the crystal. Dynamic materials under limited thermal noise and high responsiveness enable the fabrication of molecular machines with low energy dissipation and controllable dynamics.  相似文献   

13.
We successfully synthesized hydroxypropylcellulose (HPC) and methylcellulose (MC) in high yields from cellulose in 6 wt % NaOH/4 wt % urea aqueous solutions at 25 °C. The cellulose derivatives were characterized with NMR, size exclusion chromatography/laser light scattering, gas chromatography (GC), ultraviolet, and solubility measurements in different solvents. According to the results of solution 13C NMR and GC, the individual degree of substitution (DS; i.e., the average number of substituted hydroxyl groups in the monomer unit) at C‐2 hydroxyl groups was slightly higher than the DS values at C‐3 and C‐6 hydroxyl groups for HPC and MC. In comparison with traditional systems, NaOH/urea aqueous solutions were proved to be a stable and more homogeneous reaction medium for preparing cellulose ether with a more uniform microstructure. The low limits for the average number of moles of the substituent groups per monomer unit and the DS value of water‐soluble HPC were 1.03 and 0.85, respectively. MC (DS = 1.48) had good solubility in both water and organic solvents, and the precipitation point occurred at about 67 °C for a 2% (w/v) aqueous solution. In this way, we could provide a simple, pollution‐free, and homogeneous aqueous solution system for synthesizing cellulose ethers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5911–5920, 2004  相似文献   

14.
The complex solvent obtained by dissolving 5-10% of lithium chloride in N,N-dimethylacetamide (DMA) presents a good method for dissolving highly insoluble polymers, such as cellulose. 1H, 13C and 7Li NMR spectroscopy have been used, together with viscosity and conductivity measurements, for the study of this complex solvent. The 1H and 13C chemical shift variations of DMA, on increasing the lithium chloride concentration, are found to be in opposite directions. The T1 relaxation times show a large decrease in the mobility of DMA in the presence of lithium chloride. Methyl-β-D -glucopyranoside has been used as a model for cellulose in order to investigate the mechanism of solution of this polymer. It was found that each hydroxy group of the solute interacts with one lithium chloride molecule in solution.  相似文献   

15.
利用精密绝热量热仪测定了0.03355mol·kg-1的硼砂水溶液在78~351K温区的热容,从实验热容测定结果得到了该水溶液的凝固点为272.905K。用最小二乘法将实验热容值对温度进行拟合,建立了该溶液的热容随温度变化的多项式方程。根据热力学函数关系式,用此多项式方程进行数值积分,获得了以298.15K为基准的该溶液在80~350K温区每隔5K的热力学函数值,并计算出摩尔熔化焓和熔化熵分别为4.536kJ·mol-1和16.22J·K-1·mol-1。根据溶液凝固点降低值,计算出了该溶液的活度为0.99763。  相似文献   

16.
On the atomic scale, Molecular Dynamics (MD) Simulation of Nano Ni cluster impact on Ni (100) substrate surface have been carried out for energies of E a = 1–5 eV/atom and total energy of E T = 195 eV (the total energy of cluster is E T = nE a, n is the number of cluster atoms) to understand quantitatively the interaction mechanisms between the cluster atoms and the substrate atoms. The many-body Embedded Atom Method (EAM) was used in this simulation. We investigated the maximum substrate temperature T max and the time t max within which this temperature is reached as a function of cluster sizes and the total energy E T. The temperature T max is linearly proportional to total cluster energy. For the constant energy per atom and for the cluster size increase, the correlated collisions rapidly transfers energy to the substrate, and the time t max approached a constant value. For constant total energy the temperature T max and the time t max versus different cluster sizes was studied. We showed that the cluster implantation and sputtering atoms from the surface are affected by the cluster size and total kinetic energy of the clusters. Finally time dependence of the number N dis of disordered atoms in the substrate was observed.  相似文献   

17.
13C spin–lattice relaxation times determined for the protonated carbons of carboxylic acids and methyl esters give indications of solution dimerization with the free acids. Since isopthalic and fumaric acids have two carboxyl functions they are able to polymerize in solution. Unlike the case for molecular aggregation due to weak hydrogen bonding in solution (e.g. alcohols, phenols), the 13C T1 values of mono carboxylic acids are not significantly affected by dilution to c. 10?2 M. Variable temperature T1 measurements of both the mono and dibasic acids gave activation energies for molecular reorientation of the order of 2 kcal mol?1, considerably lower than Ea for hydrogen bonded alcohols and comparable with Ea for the unassociated methyl esters of propionic and benzoic acids.  相似文献   

18.
Contributions to the Chemistry of Phosphorus. 212. Tetraisopropyldodecaphosphane(4), P12i-Pr4 – Preparation, Properties, and Molecular Dynamics According to an earlier crystal structure analysis, tetraisopropyldodecaphosphane(4) ( 1 ) exhibits the symmetry C2, and the substituents are arranged in all-trans position [3]. We have now found by NMR spectroscopic studies that in solution a second configurational isomer of the symmetry CS ( 1b ) exists in addition to the molecule present in the crystal ( 1a ). The transformation of 1a into 1b , which can only occur through a quasi synchronous inversion at the atoms P3 and P4 or P9 and P10, takes place at a noticeable rate already below room temperature.  相似文献   

19.
Polymeric xylan can be reacted with propylene oxide (PO) in aqueous alkali homogeneously. Since xylan is isolated from biomass in aqueous alkaline solution, an in-line modification with PO as part of the isolation protocol, is most practical. Hydroxypropyl xylan (HPX) is a low molecular weight, branched, water-soluble polysaccharide with low intrinsic viscosity and thermoplasticity. Following peracetylation of HPX in formamide solution, water-insoluble acetoxypropyl xylan (APX) is formed that is also thermoplastic but no longer water soluble. The glass transition temperature (T g) of APX varies in relation to degree of substitution with hydroxypropyl groups (DSPO), and this is found to decline from 160 to 70°C as DSPO rises from 0.2 to 2.0. At a temperature above the T g of HPX a molecular reorganization is noted, and a faint transition due to melting (T m) is observed at 205°C. HPX thermally degrades with a weight loss maximum at 317°C, or approximately 60°C below that of a corresponding cellulose derivative. HPX forms clear films when solvent cast from aqueous solution. Films are higher in ultimate tensile strength and lower in toughness than corresponding cellulose derivative films. The properties of HPX and APX derivatives qualify this material as a potential biodegradable and thermoplastic additive to melt-processed plastics. Blend characteristics with polystyrene reveal a shear-thinning effect in melt and a plasticization effect in solid state.  相似文献   

20.
A new dissolution method, a two-step process, for cellulose in NaOH/urea aqueous system was investigated with 13C NMR, wide X-ray diffraction (WXRD), and solubility test. The two steps were as follows: (1) formation and swelling of a cellulose–NaOH complex and (2) dissolution of the cellulose–NaOH complex in aqueous urea solution. The dissolution mechanism could be described as strong interaction between cellulose and NaOH occurring in the aqueous system to disrupt the chain packing of original cellulose through the formation of new hydrogen bonds between cellulose and NaOH hydrates, and surrounding the cellulose–NaOH complex with urea hydrates to reduce the aggregation of the cellulose molecules. This leads to the improvement in solubility of the polymer and stability of the cellulose solutions. By using this two-step process, cellulose can be dissolved at 0–5 °C in contrast to the known process that requires −12 °C. Regenerated cellulose (RC) films with good mechanical properties and excellent optical transmittance were prepared successfully from the cellulose solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号