首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phase transition and magnetic properties of a ferromagnet spin-S, a disordered diluted thin and semi-infinite film with a face-centered cubic lattice are investigated using the high-temperature series expansions technique extrapolated with Padé approximants method for Heisenberg, XY and Ising models. The reduced critical temperature of the system τc is studied as function of the thickness of the thin film and the exchange interactions in the bulk, and within the surfaces Jb, Js and J, respectively. It is found that τc increases with the exchange interactions of surface. The magnetic phase diagrams (τc versus the dilution x) and the percolation threshold are obtained. The shifts of the critical temperatures Tc(l) from the bulk value (Tc(∞)/Tc(l) − 1) can be described by a power law lλ, where λ = 1/υ is the inverse of the correlation length exponent.  相似文献   

2.
We study the Klein-Gordon and Dirac equations in the presence of a background metric ds2=−dt2+dx2+e−2gx(dy2+dz2) in a semi-infinite lab (x>0). This metric has a constant scalar-curvature R=6g2 and is produced by a perfect fluid with equation of state p=−ρ/3. The eigenfunctions of spin-0 and spin-1/2 particles are obtained exactly, and the quantized energy eigenvalues are compared. It is shown that both of these particles must have nonzero transverse momentum in this background. We show that there is a minimum energy E2min=m2c4+g2c2?2 for bosons (EKG>Emin), while the fermions have no specific ground state (EDirac>mc2).  相似文献   

3.
Continuing the systematic study of ozone high-resolution infrared spectra, we present in this paper the measurements and analyses of line positions for the 18O16O18O isotopomer. In the range 900-5000 cm−1, corresponding to the observed spectra, 15 bands are analysed: ν1, ν3, ν2+ν3, ν1+ν2, 2ν3, ν1+ν3, 2ν1, ν2+2ν3, ν1+ν2+ν3, 3ν3, 2ν1+ν3, ν2+3ν3, ν1+3ν3, ν1+ν2+3ν3, and 5ν3. As in the case of 16O3, 18O3, and 16O18O16O, the analysis of these bands is performed using effective rovibrational Hamiltonians for nine polyads of interacting upper vibrational states. To correctly reproduce all observed transitions, we have to account for resonance perturbations due to 13 “Dark” states: (0 3 0), (0 4 0), (2 1 0), (0 3 1), (1 0 2), (0 4 1), (1 1 2), (3 1 0), (0 3 2), (0 0 4), (3 2 0), (0 1 4), and (0 4 2). We present the range of observed transitions, the results for spectroscopic parameters (vibrational energy levels, rotational and centrifugal distortion constants, and resonance coupling parameters), as well as the statistics for rovibrational energy levels, calculations and measurements. A comparison of observed band centres with those predicted from an isotopically invariant potential function is discussed. The RMS deviation between predicted and directly observed band centres is ≈0.03 cm−1 up to 3000 and ≈0.25 cm−1 for all 16 bands up to 5000 cm−1.  相似文献   

4.
Tao Xu 《Annals of Physics》2006,321(9):2017-2026
The vortex line of the Gross-Pitaevskii model is studied. The kinetic helicity of the vortex is discussed, and vortex structure is classified by the Hopf index, linking number in geometry. A mechanism of generation and annihilation of vortex lines is given by the method of phase singularity theory. The dynamic behavior of the vortex at the critical points is discussed in detail, and three kinds of length approximation relations at the neighborhood of a critical point are given: l ∝ (t − t)1/2, l ∝ t − t, l = const.  相似文献   

5.
The infrared spectrum of CH3D from 3250 to 3700 cm−1 was studied for the first time to assign transitions involving the ν2 + ν3, ν2 + ν5, ν2 + ν6, ν3 + 2ν6 and 3ν6 vibrational states. Line positions and intensities were measured at 0.011 cm−1 resolution using Fourier transform spectra recorded at Kitt Peak with isotopically enriched samples. Some 2852 line positions (involving over 900 upper state levels) and 874 line intensities were reproduced with RMS values of 0.0009 cm−1 and 4.6%, respectively. The strongest bands were found to be ν2 + ν3 at 3499.7 cm−1 and ν2 + ν6 at 3342.5 cm−1 with integrated strengths, respectively, of 8.17 × 10−20 and 2.44 × 10−20 (cm−1/molecule · cm−2) at 296 K (for 100% CH3D). The effective Hamiltonian was expressed in terms of irreducible tensor operators and adapted to symmetric top molecules. Its present configuration in the MIRS package permitted simultaneous consideration of the four lowest polyads of CH3D: the Ground State (G.S.), the Triad from 6.3 to 9.5 μm, the Nonad from 3.1 to 4.8 μm and now the Enneadecad (19 bands) from 2.2 to 3.1 μm. The CH3D line parameters for this interval were calculated to create a new database for the 3 μm region.  相似文献   

6.
The vibration-torsion-rotation spectrum of CH3SiH3 has been measured from 470 to 725 cm−1 at near-Doppler resolution. The full-width at half - maximum of the lines observed near 600 cm−1 was 0.0011 cm−1. The spectra were obtained using a Bruker IFS 125 HR Fourier transform spectrometer with the broadband source radiation being supplied from the synchrotron emission of the storage ring at the Canadian Light Source. Three vibrational bands were investigated: the lowest lying perpendicular fundamental ν12 centred near 524 cm−1, the lowest lying parallel fundamental ν5 near 703 cm−1, and the torsional hot band ν12 + ν6 − ν6 near 534 cm−1. For ν12 and ν5, the resolution and sensitivity are much improved over those in earlier studies, with many of the torsional multiplets now being resolved even in the cases where the upper levels are unperturbed. The primary motivation for the present work was the hot band, here reported for the first time, where the dependence of the silyl rock in ν12 on the torsional motion is much more pronounced. In addition, for the vibrational ground state (gs), two “forbidden” high torsional overtones v6 = 3 ← 0 and 5 ← 0 have been observed that become allowed through resonant mixing of the upper states with ν12 and ν5, respectively. In each case, two (Kσ) series have been measured where the mixing is largest. Here σ = 0, 1, −1 labels the torsional sub-levels. Using the Fourier transform waveguide spectrometer at E. T. H., the three σ-components of the (J = 1 ← 0) transition in ν12 + ν6 were observed, and a series of direct l-doubling transitions in ν12 + ν6 were measured for σ = 0. In a global fit, all the new data have been analysed along with the frequencies for other transitions obtained in earlier investigations. The analysis takes into account the relevant interactions among the torsional stacks of levels in the gs, ν12, and ν5. These include the previously known (gsν12) Coriolis-like and (gsν5) Fermi-like interactions along with a higher order (ν12ν5) Coriolis-like coupling introduced here. This last is responsible for the strong perturbation of the ν5 series with K = 10, 11, and 12, and of the corresponding hot band series. A good fit to 9282 frequencies including 7942 new measurements was obtained both with the Free Rotor model in which the torsion is classified as a rotation, and with the High Barrier model in which the torsion is classified as a vibration. The Hamiltonian is discussed with emphasis on the new terms required for treating ν12 + ν6 − ν6.  相似文献   

7.
Passively Q-switched c-cut Nd:Gd0.63Y0.37VO4 laser performance at 1.06 μm was demonstrated with Cr4+:YAG as saturable absorbers for the first time to our knowledge. This c-cut mixed crystal was found to have large energy storage capacity. The shortest pulse width, largest pulse energy, and highest peak power were obtained to be 6.6 ns, 201.7 μJ, and 30.6 kW, respectively.  相似文献   

8.
The ν9 fundamental band of ethane occurs in the 12 μm region. It is the strongest band of ethane in a terrestrial window and is commonly used for the identification of ethane in the Jovian planets. The ν9 + ν4 − ν4 band occurs in the same region; neither can be analysed as an isolated band, since both are embedded in the torsional bath of the ground vibrational state. We report here two global fit models including data from both of these bands as well as the ν3 fundamental and the ν4, 2ν4 − ν4, and 3ν4 torsional transitions. The first is restricted to −5 ? KΔK ? 15 in the hot band and gives an excellent fit to the included data. Three resonant interactions are identified in this fit—a Coriolis interaction with two resonant cases between the ν9 torsional stack and that of the ground vibrational state (gs) and a resonant Fermi interaction between the ν3 fundamental and the gs. Hot band lines with KΔK < −5 are influenced by a fourth perturbation, with a crossing at −11 < KΔK < −10, which has been attributed to an interaction with the ν12 fundamental. A second fit, demonstrating a promising treatment of this interaction, is also presented.  相似文献   

9.
The jet-cooled spectrum of pentafluoroethane (C2HF5) has been recorded between 1100 and 1325 cm−1 at a resolution of 0.0022 cm−1. A rotational temperature of approximately 10 K was achieved by expanding 50 Torr of C2HF5 in 500 Torr of helium. Transitions belonging to five different fundamental vibrations have been assigned and fit to a Watson Hamiltonian: the ν3 band at 1309.880494(189) cm−1, ν4 at 1200.734645(67) cm−1, ν5 at 1142.78147(33) cm−1, ν13 at 1223.334098(115) cm−1, and ν14 at 1147.394185(163) cm−1. The fit of the ν4 band has an rms deviation of 0.000436 cm−1 compared to the uncertainty in the experimental line position of 0.0002 cm−1. Satisfactory fits were achieved for the other four bands (ν3, ν5, ν13, ν14) at this cold temperature, with most of the centrifugal distortion constants fixed at the ground state values. Joint fits with previous work were attempted for the ν4 and ν13, successfully in the former case and unsuccessfully in the latter.  相似文献   

10.
The high-resolution absorption spectrum of the HDO molecule was recorded with a Fourier-transform interferometer in the region of 8900-9600 cm−1, where the strongly interacted bands 2ν1 + ν3, 3ν1 + ν2, ν1 + 2ν2 + ν3, 2ν1 + 3ν2, 4ν2 + ν3, ν1 + 5ν2, and 7ν2 are located. About 1000 transitions were assigned to these seven bands based on the ab initio predictions [J. Chem. Phys. 106 (1997) 4618]. Altogether, 375 upper energy levels were determined, including 24 energy levels of the highly excited bending (070) state. On that basis, the necessity of the “Effective Hamiltonian” concept in the spectroscopic analysis is discussed.  相似文献   

11.
Fourier transform spectra of mono-13C ethylene have been recorded in the 8.4-14.3-μm spectral region (700-1190 cm−1) using a Bruker 120 HR interferometer at a resolution of 0.0017 cm−1 allowing the extensive study of the set of resonating states {101, 81, 71, 41, 61}. Due to the high resolution available as well as the extended spectral range involved in this study, a much larger set of line assignments are now available. The present analysis has lead to the determination of more accurate spectroscopic constants, including interaction constants, than were obtained in earlier studies. In particular, the following band centers were derived: ν0(ν10) = 825.40602(30) cm−1, ν0(ν8) = 932.19572(15) cm−1, ν0(ν7) = 937.44452(10) cm−1, ν0(ν4) = 1025.6976(14) cm−1. Finally a synthetic spectrum was generated leading to the assignment of a number of 13C12CH4 lines observed in an earlier heterodyne spectroscopic study.  相似文献   

12.
The weak absorption spectrum of dideuterated water, D2O, has been recorded by Intracavity Laser Absorption Spectroscopy (ICLAS) between 11 400 and 11 900 cm−1. This spectrum is dominated by the 3ν1 + ν2 + ν3 and the ν1 + ν2 + 3ν3 centered at 11 500.25 and 11 816.64 cm−1, respectively. A total of 530 energy levels belonging to eight vibrational states were determined. The rovibrational assignment process of the 840 lines attributed to D2O was mostly based on the results of new variational calculations consisting in a refinement of the potential energy surface of Shirin et al. [J. Chem. Phys., 120 (2004) 206] on the basis of recent experimental observations, and a dipole moment surface from Schwenke and Partridge [J. Chem. Phys. 113 (2000) 6592]. The overall agreement between these calculations and the observed spectrum is very good both for the line positions and the line intensities.  相似文献   

13.
The high resolution infrared spectrum of mono-isotopic F37Cl16O3 has been studied in the regions of ν1, ν2, ν4 and ν2 + ν5 bands, centered at 1060.20, 707.16, 1301.71 and 1292.15 cm−1, respectively. The ν1 and ν2 parallel bands are unperturbed so their analysis was straightforward and 3355 and 2433 transitions were assigned, respectively. The band origins, the rotational and centrifugal molecular constants in the v1 = 1 and v2 = 1 states have been determined, with standard deviation of the fits σ = 0.00019 and 0.00018 cm−1. The ν4 fundamental is affected by an anharmonic resonance with the ν2 + ν5 combination band. The kl > 0 sublevels cross at kl ? 27 because of the opposite values of and . The anharmonic resonance constant  cm−1 has been derived. The Δl = Δk = ±2 and Δl = 0, Δk = ±3 essential resonances have been found to be effective in ν4, while in ν2 + ν5 only the Δl = Δk = ±2 one was active. A total of 5721 transitions have been assigned, 25% of them belonging to ν2 + ν5. The rovibrational parameters and the interaction constants of F37Cl16O3 have been obtained. The standard deviation of the fit is 0.0006 cm−1, six times the estimated data precision. The equilibrium geometry of perchloryl fluoride has been determined from the Ae and Be constants of F35Cl16O3 and F37Cl16O3. Using the A0 and B0 constants of all the symmetric species the r0 geometry has also been derived.  相似文献   

14.
Several new infrared absorption bands for 32S16O3 have been measured and analyzed. The principal bands observed were ν1+ν2 (at 1561 cm−1), ν1+ν4 (at 1594 cm−1), ν3+ν4 (at 1918 cm−1), and 3ν3 (at 4136 cm−1). Except for 3ν3, these bands are very complicated because of (a) the Coriolis coupling between ν2 and ν4, (b) the Fermi resonance between ν1 and 2ν4, (c) the Fermi resonance between ν1 and 2ν2, (d) ordinary l-type resonance that couples levels that differ by 2 in both the k and l quantum numbers, and (e) the vibrational l-type resonance between the A1 and A2 levels of ν3+ν4. The unraveling of the complex pattern of these bands was facilitated by a systematic approach to the understanding of the various interactions. Fortunately, previous work on the fundamentals permitted good estimates of many constants necessary to begin the assignments and the fit of the measurements. In addition, the use of hot band transitions accompanying the ν3 band was an essential aid in fitting the ν3+ν4 transitions since these could be directly observed for only one of four interacting states. From the hot band analysis we find that the A1 vibrational level is 3.50 cm−1 above the A2 level, i.e., r34=1.75236(7) cm−1. In the case of the 3ν3 band, the spectral analysis is straightforward and a weak Δk=±2, Δl3=±2 interaction between the l3=1 and l3=3 substates locates the latter A1 and A2 “ghost” states 22.55(4) cm−1 higher than the infrared accessible l3=1 E state.  相似文献   

15.
The five lowest doubly excited deformational vibrational bands ν4 + ν6, 2ν6, ν3 + ν4, ν3 + ν6, and 2ν3 of PH2D have been recorded for the first time using a Bruker 120 HR interferometer with a resolution 0.0033 cm−1 and analysed. Some transitions belonging to a very weak band 2ν4 have been also assigned. From the fit 24 and 86, respectively, diagonal and resonance interaction parameters were obtained which reproduce 1089 upper energy levels obtained from more than 4600 assigned transitions with the rms deviation of 0.00059 cm−1.  相似文献   

16.
Resonance-enhanced multiphoton ionization (REMPI) has been applied to study the n → 3p Rydberg transition of pyrimidine (jet-cooled sample and mass resolved spectrum). Only the one component, the 3pz(B2), appears in the (2 + 1) REMPI and the active vibrations are ν6a = 622, ν1 = 946, and ν9a = 1116 cm−1. The symmetry of the state was determined by polarization measurements (linear, circular polarization). The first (π,n) 3B1 triplet state appears as a one-photon resonance in the three-photon ionization process.  相似文献   

17.
We report a six-dimensional CCSD(T)/aug-cc-pVTZ dipole moment surface for the electronic ground state of PH3 computed ab initio on a large grid of 10 080 molecular geometries. Parameterized, analytical functions are fitted through the ab initio data, and the resulting dipole moment functions are used, together with a potential energy function determined by refining an existing ab initio surface in fittings to experimental wavenumber data, for simulating absorption spectra of the first three polyads of PH3, i.e., (ν2ν4), (ν1ν3, 2ν2, 2ν4ν2 + ν4), and (ν1 + ν2, ν3 + ν2, ν1 + ν4, ν3 + ν4, 2ν2 + ν4, ν2 + 2ν4, 3ν2, 3ν4). The resulting theoretical transition moments show excellent agreement with experiment. A line-by-line comparison of the simulated intensities of the ν2/ν4 band system with 955 experimental intensity values reported by Brown et al. [L.R. Brown, R.L. Sams, I. Kleiner, C. Cottaz, L. Sagui, J. Mol. Spectrosc. 215 (2002) 178-203] gives an average absolute percentage deviation of 8.7% (and a root-mean-square deviation of 0.94 cm−1 for the transition wavenumbers). This is very remarkable since the calculations rely entirely on ab initio dipole moment surfaces and do not involve any adjustment of these surfaces to reproduce the experimental intensities. Finally, we predict the line strengths for transitions between so-called cluster levels (near-degenerate levels formed at high rotational excitation) for J up to 60.  相似文献   

18.
The high-resolution spectrum of cyanogen (14N12C12C14N) has been measured from 500 to 4900 cm−1. For this isotopomer many combination levels with both degenerate fundamentals, ν4 and ν5, have been measured for the first time and the effects of vibrational l-type resonance are observed as well as rotational l-type resonance. The effects of the vibrational resonance coupling ν2 and 2ν4 have also been studied. The data have been combined with earlier measurements below 500 cm−1 to give a comprehensive catalog of the vibrational energy levels and the rovibrational constants for the normal isotopomer of cyanogen. A comparison of the term value constants for the three major symmetric isotopomers is given and they are compared with a recent ab initio calculation. The present data were combined with earlier work on the two symmetric isotopomers, 13C214N2 and 12C215N2, to obtain the equilibrium bond lengths, rCC = 138.109(60) pm and rCN = 115.976(40) pm.  相似文献   

19.
Over 8000 line positions and intensities of phosphine (PH3) at 3 μm have been measured at 0.0115 cm−1 resolution with the McMath-Pierce Fourier Transform spectrometer at Kitt Peak. The observed line intensities ranged from 4.13 × 10−6 to 4.69 × 10−2 cm−2 atm−1 at 296 K, for line positions between 2724.477 and 3601.652 cm−1. This region spans eight interacting vibrational states: 3ν2 (2940.8 cm−1), 2ν2 + ν4 (3085.6 cm−1), ν2 + 2ν4 (3214.9 cm−1), ν1 + ν2 (3307.6 cm−1), ν2 + ν3 (3310.5 cm−1), 3ν4 (∼3345 cm−1), ν1 + ν4 (3426.9 cm−1), and ν3 + ν4 (3432.9 cm−1). Assignments have been determined for all the bands except 3ν4 (a weak band in a highly congested area) for a total of 4232 transitions. The total integrated intensity for this region is 5.70 cm−2 atm−1 near 296 K, and assigned lines account for 79% of the observed absorption. The two strongest bands in the region are ν1 + ν4 and ν3 + ν4 with band strengths at 296 K of 1.61 and 2.01 cm−2 atm−1, respectively. An empirical database of PH3 line parameters (positions, intensities, and assignments) is now available. Lower state energies (corresponding to assignments from this study) and line widths from the literature are included; default values are used for unassigned features.  相似文献   

20.
The high-resolution (0.0030 cm−1) Fourier transform infrared spectrum of CH279BrF has been studied in part of the atmospheric window between 910 and 980 cm−1, the region of the ν9 (935.847 cm−1) and ν5 + ν6 (961.239 cm−1) bands. The ν9 fundamental consists of a pseudo a-type band induced by Coriolis coupling with ν5 + ν6, in turn exhibiting a predominant a-type structure. Several interactions connecting these levels and the dark state 3ν6 have been assessed. The whole data set is treated using Watson’s A-reduced Hamiltonian in the Ir representation implemented with first order a- and b- and c-type Coriolis terms. A detailed analysis of the rotational structure yields a set of accurate upper-state parameters up to quartic distortion terms for ν9 and ν5 + ν6. In addition, spectroscopic information about the dark ternary overtone of ν6 has been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号