首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, three new families of eighth-order iterative methods for solving simple roots of nonlinear equations are developed by using weight function methods. Per iteration these iterative methods require three evaluations of the function and one evaluation of the first derivative. This implies that the efficiency index of the developed methods is 1.682, which is optimal according to Kung and Traub’s conjecture [7] for four function evaluations per iteration. Notice that Bi et al.’s method in [2] and [3] are special cases of the developed families of methods. In this study, several new examples of eighth-order methods with efficiency index 1.682 are provided after the development of each family of methods. Numerical comparisons are made with several other existing methods to show the performance of the presented methods.  相似文献   

2.
In this work we present a family of predictor-corrector methods free from second derivative for solving nonlinear systems. We prove that the methods of this family are of third order convergence. We also perform numerical tests that allow us to compare these methods with Newton’s method. In addition, the numerical examples improve theoretical results, showing super cubic convergence for some methods of this family.  相似文献   

3.
In this work, we develop a family of predictor-corrector methods free from second derivative for solving systems of nonlinear equations. In general, the obtained methods have order of convergence three but, in some particular cases the order is four. We also perform different numerical tests that confirm the theoretical results and allow us to compare these methods with Newton’s classical method and with other recently published methods.  相似文献   

4.
In this paper, we present two new iterative methods for solving nonlinear equations by using suitable Taylor and divided difference approximations. Both methods are obtained by modifying Potra-Pták’s method trying to get optimal order. We prove that the new methods reach orders of convergence four and eight with three and four functional evaluations, respectively. So, Kung and Traub’s conjecture Kung and Traub (1974) [2], that establishes for an iterative method based on n evaluations an optimal order p=2n−1 is fulfilled, getting the highest efficiency indices for orders p=4 and p=8, which are 1.587 and 1.682.We also perform different numerical tests that confirm the theoretical results and allow us to compare these methods with Potra-Pták’s method from which they have been derived, and with other recently published eighth-order methods.  相似文献   

5.
In the present paper, by approximating the derivatives in the well known fourth-order Ostrowski’s method and in a sixth-order improved Ostrowski’s method by central-difference quotients, we obtain new modifications of these methods free from derivatives. We prove the important fact that the methods obtained preserve their convergence orders 4 and 6, respectively, without calculating any derivatives. Finally, numerical tests confirm the theoretical results and allow us to compare these variants with the corresponding methods that make use of derivatives and with the classical Newton’s method.  相似文献   

6.
In this paper new fourth order optimal root-finding methods for solving nonlinear equations are proposed. The classical Jarratt’s family of fourth-order methods are obtained as special cases. We then present results which describe the conjugacy classes and dynamics of the presented optimal method for complex polynomials of degree two and three. The basins of attraction of existing optimal methods and our method are presented and compared to illustrate their performance.  相似文献   

7.
Using an interactive approach which combines symbolic computation and Taylor’s series, a wide family of three-point iterative methods for solving nonlinear equations is constructed. These methods use two suitable parametric functions at the second and third step and reach the eighth order of convergence consuming only four function evaluations per iteration. This means that the proposed family supports the Kung-Traub hypothesis (1974) on the upper bound 2m of the order of multipoint methods based on m + 1 function evaluations, providing very high computational efficiency. Different methods are obtained by taking specific parametric functions. The presented numerical examples demonstrate exceptional convergence speed with only few function evaluations.  相似文献   

8.
By applying various known summation theorems to a general formula based upon Bailey’s transform theorem due to Slater, Exton has obtained numerous new quadratic transformations involving hypergeometric functions of two and of higher order. Some of the results have typographical errors and have been corrected recently by Choi and Rathie. In addition, two new quadratic transformation formulæ were also obtained [Junesang Choi, A.K. Rathie, Quadratic transformations involving hypergeometric functions of two and higher order, EAMJ, East Asian Math. J. 22 (2006) 71-77]. The aim of this research paper is to obtain a generalization of one of the Exton’s quadratic transformation. The results are derived with the help of generalized Kummer’s theorem obtained earlier by Lavoie, Grondin and Rathie. As special cases, we mention six interesting results closely related to that of Exton’s result.  相似文献   

9.
In this paper, a family of fourth-order Steffensen-type two-step methods is constructed to make progress in including Ren-Wu-Bi’s methods [H. Ren, Q. Wu, W. Bi, A class of two-step Steffensen type methods with fourth-order convergence, Appl. Math. Comput. 209 (2009) 206-210] and Liu-Zheng-Zhao’s method [Z. Liu, Q. Zheng, P. Zhao, A variant of Steffensens method of fourth-order convergence and its applications, Appl. Math. Comput. 216 (2010) 1978-1983] as its special cases. Its error equation and asymptotic convergence constant are deduced. The family provides the opportunity to obtain derivative-free iterative methods varying in different rates and ranges of convergence. In the numerical examples, the family is not only compared with the related methods for solving nonlinear equations, but also applied in the solution of BVPs of nonlinear ODEs by the finite difference method and the multiple shooting method.  相似文献   

10.
Starting from a suitable fixed point relation, a new family of iterative methods for the simultaneous inclusion of multiple complex zeros in circular complex arithmetic is constructed. The order of convergence of the basic family is four. Using Newtons and Halleys corrections, we obtain families with improved convergence. Faster convergence of accelerated methods is attained with only few additional numerical operations, which provides a high computational efficiency of these methods. Convergence analysis of the presented methods and numerical results are given. AMS subject classification 65H05, 65G20, 30C15  相似文献   

11.
Approximate Bayesian inference by importance sampling derives probabilistic statements from a Bayesian network, an essential part of evidential reasoning with the network and an important aspect of many Bayesian methods. A critical problem in importance sampling on Bayesian networks is the selection of a good importance function to sample a network’s prior and posterior probability distribution. The initially optimal importance functions eventually start deviating from the optimal function when sampling a network’s posterior distribution given evidence, even when adaptive methods are used that adjust an importance function to the evidence by learning. In this article we propose a new family of Refractor Importance Sampling (RIS) algorithms for adaptive importance sampling under evidential reasoning. RIS applies “arc refractors” to a Bayesian network by adding new arcs and refining the conditional probability tables. The goal of RIS is to optimize the importance function for the posterior distribution and reduce the error variance of sampling. Our experimental results show a significant improvement of RIS over state-of-the-art adaptive importance sampling algorithms.  相似文献   

12.
We derive new iterative methods with order of convergence four or higher, for solving nonlinear systems, by composing iteratively golden ratio methods with a modified Newton’s method. We use different efficiency indices in order to compare the new methods with other ones and present several numerical tests which confirm the theoretical results.  相似文献   

13.
In this work we show the presence of the well-known Catalan numbers in the study of the convergence and the dynamical behavior of a family of iterative methods for solving nonlinear equations. In fact, we introduce a family of methods, depending on a parameter mN∪{0}. These methods reach the order of convergence m+2 when they are applied to quadratic polynomials with different roots. Newton’s and Chebyshev’s methods appear as particular choices of the family appear for m=0 and m=1, respectively. We make both analytical and graphical studies of these methods, which give rise to rational functions defined in the extended complex plane. Firstly, we prove that the coefficients of the aforementioned family of iterative processes can be written in terms of the Catalan numbers. Secondly, we make an incursion into its dynamical behavior. In fact, we show that the rational maps related to these methods can be written in terms of the entries of the Catalan triangle. Next we analyze its general convergence, by including some computer plots showing the intricate structure of the Universal Julia sets associated with the methods.  相似文献   

14.
The problem considered is that of forecasting demand for single-period products before the period starts. We study this problem for the case of a mail order apparel company that needs to order its products pre-season. The lack of historical demand data implies that other sources of data are needed. Advance order data can be obtained by allowing a selected group of customers to pre-order at a discount from a preview catalogue. Judgments can be obtained from purchase managers or other company experts. In this paper, we compare several existing and new forecasting methods for both sources of data. The methods are generic and can be used in any single-period problem in the apparel or fashion industries. Among the pre-order based methods, a novel ‘top-flop’ approach provides promising results. For a small group of products from the case company, expert judgment methods perform better than the methods based on advance demand information. The comparative results are obviously restricted to the specific case study, and additional testing is required to determine whether they are valid in general.  相似文献   

15.
The construction of a class of three-point methods for solving nonlinear equations of the eighth order is presented. These methods are developed by combining fourth order methods from the class of optimal two-point methods and a modified Newton’s method in the third step, obtained by a suitable approximation of the first derivative based on interpolation by a nonlinear fraction. It is proved that the new three-step methods reach the eighth order of convergence using only four function evaluations, which supports the Kung-Traub conjecture on the optimal order of convergence. Numerical examples for the selected special cases of two-step methods are given to demonstrate very fast convergence and a high computational efficiency of the proposed multipoint methods. Some computational aspects and the comparison with existing methods are also included.  相似文献   

16.
In this paper, we developed two new families of sixth-order methods for solving simple roots of non-linear equations. Per iteration these methods require two evaluations of the function and two evaluations of the first-order derivatives, which implies that the efficiency indexes of our methods are 1.565. These methods have more advantages than Newton’s method and other methods with the same convergence order, as shown in the illustration examples. Finally, using the developing methodology described in this paper, two new families of improvements of Jarratt method with sixth-order convergence are derived in a straightforward manner. Notice that Kou’s method in [Jisheng Kou, Yitian Li, An improvement of the Jarratt method, Appl. Math. Comput. 189 (2007) 1816-1821] and Wang’s method in [Xiuhua Wang, Jisheng Kou, Yitian Li, A variant of Jarratt method with sixth-order convergence, Appl. Math. Comput. 204 (2008) 14-19] are the special cases of the new improvements.  相似文献   

17.
In this paper, we characterize counter-monotonic and upper comonotonic random vectors by the optimality of the sum of their components in the senses of the convex order and tail convex order respectively. In the first part, we extend the characterization of comonotonicity by  Cheung (2010) and show that the sum of two random variables is minimal with respect to the convex order if and only if they are counter-monotonic. Three simple and illuminating proofs are provided. In the second part, we investigate upper comonotonicity by means of the tail convex order. By establishing some useful properties of this relatively new stochastic order, we prove that an upper comonotonic random vector must give rise to the maximal tail convex sum, thereby completing the gap in  Nam et al. (2011)’s characterization. The relationship between the tail convex order and risk measures along with conditions under which the additivity of risk measures is sufficient for upper comonotonicity is also explored.  相似文献   

18.
In the present paper, a family of predictor–corrector (PC) schemes are developed for the numerical solution of nonlinear parabolic differential equations. Iterative processes are avoided by use of the implicit–explicit (IMEX) methods. Moreover, compared to the predictor schemes, the proposed methods usually have superior accuracy and stability properties. Some confirmation of these are illustrated by using the schemes on the well-known Fisher’s equation.  相似文献   

19.
In many outranking methods, the alternatives are first compared pairwise to build a valued outranking relation, which is then exploited to derive a recommendation for the decision maker. This paper proposes extensions of Arrow and Raynaud’s prudence principle to exploit a valued outranking relation, even in cases where the outranking values have an ordinal interpretation. The idea is to build a ranking that maximizes the weakest support for its implicit pairwise comparisons. We present a family of exploitation models providing three types of solutions, depending on the decision maker’s request: a linear order, a weak order, or a partial preorder. An algorithm is provided which solves the exploitation models. Relations between these models and some of their properties are also discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号