首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The forced convection heat transfer resulting from the flow of a uniform stream over a flat surface on which there is a convective boundary condition is considered. In previous papers [5], [6], [7], [8] it was assumed that the convective heat transfer parameter hf associated with the hot surface depended on x, where x measures distance along the surface, so that problem could be reduced to similarity form. Here it is assumed that this heat transfer parameter hf is a constant, with the result that the temperature profiles and overall heat transfer characteristics evolve as the solution develops from the leading edge. The heat transfer near the leading edge (small x), which we find to be dominated by the surface heat flux, the solution at large distances along the surface (large x), which dominated by the surface temperature, are discussed. A numerical solution to the full problem is then obtained for a range of values of the Prandtl number to join these two solution regimes.  相似文献   

2.
The three-dimensional transition of the wake flow behind a circular cylinder is studied in detail by direct numerical simulations using 3D incompressible N-S equations for Reynolds number ranging from 200 to 300. New features and vortex dynamics of the 3D transition of the wake are found and investigated. At Re = 200, the flow pattern is characterized by mode A instability. However, the spanwise characteristic length of the cylinder determines the transition features. Particularly for the specific spanwise characteristic length linear stable mode may dominate the wake in place of mode A and determine the spanwise phase difference of the primary vortices shedding. At Re = 250 and 300 it is found that the streamwise vortices evolve into a new type of mode’“dual vortex pair mode” downstream. The streamwise vortex structures switch among mode A, mode B and dual vortex pair mode from near wake to downstream wake. At Re = 250, an independent low frequency f m in addition to the vortex shedding frequency f s is identified. Frequency coupling between f m and f s occurs. These result in the irregularity of the temporal signals and become a key feature in the transition of the wake. Based on the formation analysis of the streamwise vorticity in the vicinity of cylinder, it is suggested that mode A is caused by the emergence of the spanwise velocity due to three dimensionality of the incoming flow past the cylinder. Energy distribution on various wave numbers and the frequency variation in the wake are also described.  相似文献   

3.
The two-dimensional, steady, laminar, forced and free convective boundary layer flow of a magnetic fluid over a semi-infinite vertical plate, under the action of a localized magnetic field, is numerically studied. The magnetic fluid is considered to be water-based with temperature dependent viscosity and thermal conductivity. The study of the boundary layer is separated into two cases. In case I the boundary layer is studied near the leading edge, where it is dominated by the large viscous forces, whereas in case II the boundary layer is studied far from the leading edge of the plate where the effects of buoyancy forces increase. The numerical solution, for these two different cases, is obtained by an efficient numerical technique based on the common finite difference method. Numerical calculations are carried out for the value of Prandl number Pr =  49.832 (water-based magnetic fluid) and for different values of the dimensionless parameters entering into the problem and especially for the magnetic parameter Mn, the viscosity/temperature parameter Θ r and the thermal/conductivity parameter S*. The analysis of the obtained results show that the flow field is influenced by the application of the magnetic field as well as by the variation of the viscosity and the thermal conductivity of the fluid with temperature. It is hoped that they could be interesting for engineering applications.  相似文献   

4.
The steady two-dimensional laminar boundary layer flow of a power-law fluid past a permeable stretching wedge beneath a variable free stream is studied in this paper. Using appropriate similarity variables, the governing equations are reduced to a single third order highly nonlinear ordinary differential equation in the dimensionless stream function, which is solved numerically using the Runge-Kutta scheme coupled with a conventional shooting procedure. The flow is governed by the wedge velocity parameter λ, the transpiration parameter f0, the fluid power-law index n, and the computed wall shear stress is f″(0). It is found that dual solutions exist for each value of f0, m and n considered in λ − f″(0) parameter space. A stability analysis for this self-similar flow reveals that for each value of f0, m and n, lower solution branches are unstable while upper solution branches are stable. Very good agreements are found between the results of the present paper and that of Weidman et al. [28] for n = 1 (Newtonian fluid) and m = 0 (Blasius problem [31]).  相似文献   

5.
The characteristics of steady two-dimensional laminar boundary layer flow of a viscous and incompressible fluid past a moving wedge with suction or injection are theoretically investigated. The transformed boundary layer equations are solved numerically using an implicit finite-difference scheme known as the Keller-box method. The effects of Falkner-Skan power-law parameter (m), suction/injection parameter (f0) and the ratio of free stream velocity to boundary velocity parameter (λ) are discussed in detail. The numerical results for velocity distribution and skin friction coefficient are given for several values of these parameters. Comparisons with the existing results obtained by other researchers under certain conditions are made. The critical values off 0,m and λ are obtained numerically and their significance on the skin friction and velocity profiles is discussed. The numerical evidence would seem to indicate the onset of reverse flow as it has been found by Riley and Weidman in 1989 for the Falkner-Skan equation for flow past an impermeable stretching boundary.  相似文献   

6.
The aiding-buoyancy mixed convection heat transfer in Bingham plastic fluids from an isothermal cylinder of elliptical and circular shape in a vertical adiabatic channel is numerically investigated. For a fixed shape of the elliptical cylinder E = 2 (ratio of major to minor axes), the effect of confinement is studied for three values of blockage ratio, B, defined as the ratio of the channel width to the circumference of the cylinder/π, as 6.5, 2.17 and 1.3. In order to delineate the role of cross-section of the cylinder, results are also presented here for a circular cylinder of the same heat transfer area as the elliptical cylinder. The results presented herein span the range of conditions as: Bingham number, 0 ≤ Bn ≤ 100, Reynolds number, 1 ≤ Re ≤ 40, and Prandtl number, 1 ≤ Pr ≤ 100 over the range of Richardson number Ri = 0 (pure forced convection) to Ri = 10. Extensive results on drag coefficient, local and surface averaged values of the Nusselt number and yield surfaces are presented herein to elucidate the combined effects of buoyancy, blockage ratio and fluid yield stress. The morphology of the yield surfaces shows that the unyielded plug regions formed upstream and downstream of the cylinder grow faster at low Reynolds numbers with the increasing yield stress effects under the weak buoyancy forces, i.e., small values of Grashof or Richardson number. The heat transfer enhancement is observed with the increasing channel-confinement due to the sharpening of the temperature gradients near the surface of the cylinder. The average Nusselt number shows a positive dependence on the Reynolds number, Prandtl number and Richardson number irrespective of the shape of the cylinder or the type of fluid. By employing the modified definitions of the dimensionless parameters (based on the two choices of the overall effective fluid velocity), predictive correlations have been established for estimating the value of the average Nusselt number in a new application.  相似文献   

7.
The background method is adapted to derive rigorous limits on surface speeds and bulk energy dissipation for shear stress-driven flow in two- and three-dimensional channels. By-products of the analysis are nonlinear energy stability results for plane Couette flow with a shear stress boundary condition: when the applied stress is gauged by a dimensionless Grashoff number $\operatorname{Gr}$ , the critical $\operatorname{Gr}$ for energy stability is 139.5 in two dimensions, and 51.73 in three dimensions. We derive upper bounds on the friction (a.k.a. dissipation) coefficient $C_{f} = \tau/\overline{u}^{2}$ , where τ is the applied shear stress and $\overline{u}$ is the mean velocity of the fluid at the surface, for flows at higher $\operatorname{Gr}$ including developed turbulence: C f ≤1/32 in two dimensions and C f ≤1/8 in three dimensions. This analysis rigorously justifies previously computed numerical estimates.  相似文献   

8.
The two-dimensional, steady, laminar, forced and free convective boundary layer flow of a magnetic fluid over a semi-infinite vertical plate, under the action of a localized magnetic field, is numerically studied. The magnetic fluid is considered to be water-based with temperature dependent viscosity and thermal conductivity. The study of the boundary layer is separated into two cases. In case I the boundary layer is studied near the leading edge, where it is dominated by the large viscous forces, whereas in case II the boundary layer is studied far from the leading edge of the plate where the effects of buoyancy forces increase. The numerical solution, for these two different cases, is obtained by an efficient numerical technique based on the common finite difference method. Numerical calculations are carried out for the value of Prandl number Pr =  49.832 (water-based magnetic fluid) and for different values of the dimensionless parameters entering into the problem and especially for the magnetic parameter Mn, the viscosity/temperature parameter Θ r and the thermal/conductivity parameter S*. The analysis of the obtained results show that the flow field is influenced by the application of the magnetic field as well as by the variation of the viscosity and the thermal conductivity of the fluid with temperature. It is hoped that they could be interesting for engineering applications.  相似文献   

9.
The numerical solution of the unsteady two-dimensional Navier-Stokes equations is used to investigate the fluid forces experienced by a translating and transversely oscillating cylinder. Calculations are first performed in an oscillatory frequency range outside the synchronization when oscillatory-to-translational velocity ratio is 1.5 and at a fixed Reynolds number R = 103. The object of this study is to examine the effect of increase of forced oscillation frequency on the fluid forces. The results of this study are in good agreement with previous experimental predictions.  相似文献   

10.
In this paper we present a numerical method for solving the Dirichlet problem for a two-dimensional wave equation. We analyze the ill-posedness of the problem and construct a regularization algorithm. Using the Fourier series expansion with respect to one variable, we reduce the problem to a sequence of Dirichlet problems for one-dimensional wave equations. The first stage of regularization consists in selecting a finite number of problems from this sequence. Each of the selected Dirichlet problems is formulated as an inverse problem Aq = f with respect to a direct (well-posed) problem. We derive formulas for singular values of the operator A in the case of constant coefficients and analyze their behavior to judge the degree of ill-posedness of the corresponding problem. The problem Aq = f on a uniform grid is reduced to a system of linear algebraic equations A ll q = F. Using the singular value decomposition, we find singular values of the matrix A ll and develop a numerical algorithm for constructing the r-solution of the original problem. This algorithm was tested on a discrete problem with relatively small number of grid nodes. To improve the calculated r-solution, we applied optimization but observed no noticeable changes. The results of computational experiments are illustrated.  相似文献   

11.
Weifan Wang 《Discrete Mathematics》2009,309(11):3523-3533
Let G be a graph embedded in a surface of characteristic zero with maximum degree Δ. The edge-face chromatic number χef(G) of G is the least number of colors such that any two adjacent edges, adjacent faces, incident edge and face have different colors. In this paper, we prove that χef(G)≤Δ+1 if Δ≥13, χef(G)≤Δ+2 if Δ≥12, χef(G)≤Δ+3 if Δ≥4, and χef(G)≤7 if Δ≤3.  相似文献   

12.
This work deals with the guidance and control of a system which is composed of a rolling cylinder and a controlled slender rod that is pivoted, through its center of mass, about the cylinder's center. Given a finite time interval [0, tf], and let P1 and P2 be two points in the (X, Y)-plane. The problem dealt with here is to find a closed-loop control law for the cylinder-rod system such that:
  • 1.(i) the cylinder center will move from P1 to P2 during [0, tf] and will come to rest at P2, and
  • 2.(ii) the rod will rotate from an angle ψ21 to ψ22 during [0, tf] and will stop to rotate at t = tf.
By introducing the concept of path controllability, a closed-loop control law for the solution of the above-posed problem is proposed and its efficiency is demonstrated by solving numerically some examples.  相似文献   

13.
Alex Zhai 《Semigroup Forum》2013,86(3):634-662
We give an asymptotic estimate of the number of numerical semigroups of a given genus. In particular, if n g is the number of numerical semigroups of genus g, we prove that $$\lim_{g \rightarrow \infty} n_g \varphi^{-g} = S $$ where $\varphi = \frac{1 + \sqrt{5}}{2}$ is the golden ratio and S is a constant, resolving several related conjectures concerning the growth of n g . In addition, we show that the proportion of numerical semigroups of genus g satisfying f<3m approaches 1 as g→∞, where m is the multiplicity and f is the Frobenius number.  相似文献   

14.
The flows past a sphere and a square cylinder of diameter d moving horizontally at the velocity U in a linearly density-stratified viscous incompressible fluid are studied. The flows are described by the Navier–Stokes equations in the Boussinesq approximation. Variations in the spatial vortex structure of the flows are analyzed in detail in a wide range of dimensionless parameters (such as the Reynolds number Re = Ud/ν and the internal Froude number Fr = U/(Nd), where ν is the kinematic viscosity and N is the buoyancy frequency) by applying mathematical simulation (on supercomputers of Joint Supercomputer Center of the Russian Academy of Sciences) and three-dimensional flow visualization. At 0.005 < Fr < 100, the classification of flow regimes for the sphere (for 1 < Re < 500) and for the cylinder (for 1 < Re < 200) is improved. At Fr = 0 (i.e., at U = 0), the problem of diffusion-induced flow past a sphere leading to the formation of horizontal density layers near the sphere’s upper and lower poles is considered. At Fr = 0.1 and Re = 50, the formation of a steady flow past a square cylinder with wavy hanging density layers in the wake is studied in detail.  相似文献   

15.
In this paper, we assess two kinds of subgrid finite element methods for the two-dimensional (2D) incompressible Naver-Stokes equations (NSEs). These methods introduce subgrid-scale (SGS) eddy viscosity terms which do not act on the large flow structures. The eddy viscous terms consist of the fluid flow fluctuation strain rate stress tensors. The fluctuation tensor can be calculated by a elliptic projection or a simple L2 projection (projective filter) in finite element spaces. The finite element pair P2/P1 is adopted to numerically implement analysis and computation. We give a complete error analysis based on the assumptions of some regularity conditions. On the part of numerical tests, the numerical computations for the stationary flows show that the numerical results agree with some benchmark solutions and theoretical analysis very well. Furthermore, the given SGS models are applied to the non-stationary fluid flows.  相似文献   

16.
High Reynolds-number flow over a rotating cylinder is investigated by two-dimensional numerical computations. The Reynolds-Averaged Navier-Stokes (RANS) equations are solved via the finite-volume method and they are closed by a modified k-ε turbulence model. The spin ratio a is defined as the ratio between the cylinder’s circumferential speed velocity to the free-stream varies from 2 to 8. The flow is examined at Reynolds numbers from 5 × 105 to 5 × 106, which is considered to be an interesting range for industrial flows. Available experimental and numerical data were used to verify the validity of the implemented procedure.The results revealed stabilization of the acting forces at high spin rates, thus indicating a flowfield with suppressed vortex-shedding activity, as it is expected, in accordance with theoretical considerations in previous studies. Load coefficients were found to be inversely proportional to the Reynolds number for most of the examined rotational rates.  相似文献   

17.
By employing a new embedding technique, a short-time analytical solution for the melting of a long cylinder due to an axisymmetric hot spot is presented in this paper. The melt is removed as soon as it is formed. The initial propagation of the melt along the interior of the cylinder exhibits a well-known behaviour. However, the melt propagation along the surface of the cylinder is of a new type and depending on the applied flux whether it is the continuation of the pre-melting flux or diferent, the initial propagation of the melt along the surface is proportional tot 1/2 ort 1/4, wheret is the dimensionless time. The melt propagation is much faster along the surface of the cylinder than towards the interior.  相似文献   

18.
Steady two-dimensional creeping flows induced by line singularities in the presence of an infinitely long circular cylinder with stick-slip boundary conditions are examined. The singularities considered here include a rotlet, a potential source and a stokeslet located outside a cylinder and lying in a plane containing the cylinder axis. The general exterior boundary value problem is formulated and solved in terms of a stream function by making use of the Fourier expansion method. The solutions for various singularity driven flows in the presence of a cylinder are derived from the general results. The stream function representation of the solutions involves a definite integral whose evaluation depends on a non-dimensional slip parameter l1\lambda_1. For extremal values, l1 = 0\lambda_1 = 0 and l1 = 1\lambda_1 = 1, of the slip parameter our results reduce to solutions of boundary value problems with stick (no-slip) and perfect slip conditions, respectively.¶The slip parameter influences the flow patterns significantly. The plots of streamlines in each case show interesting flow patterns. In particular, in the case of a single rotlet/stokeslet (with axis along y-direction) flows, eddies are observed for various values of l1\lambda_1. The flow fields for a pair of singularities located on either side of the cylinder are also presented. In these flows, eddies of different sizes and shapes exist for various values of l1\lambda_1 and the singularity locations. Plots of the fluid velocity on the surface show locations of the stagnation points on the surface of the cylinder and their dependencies on l1\lambda_1 and singularity locations.  相似文献   

19.
Two dimensional steady, laminar and incompressible motion of a micropolar fluid between an impermeable disk and a permeable disk is considered to investigate the influence of the Reynolds number and the micropolar structure on the flow characteristics. The main flow stream is superimposed by constant injection velocity at the porous disk. An extension of Von Karman’s similarity transformations is applied to reduce governing partial differential equations (PDEs) to a set of non-linear coupled ordinary differential equations (ODEs) in dimensionless form. An algorithm based on finite difference method is employed to solve these ODEs and Richardson’s extrapolation is used to obtain higher order accuracy. The numerical results reflect the expected physical behavior of the flow phenomenon under consideration. The study indicates that the magnitude of shear stress increases strictly and indefinitely at the impermeable disk while it decreases steadily at the permeable disk, by increasing the injection velocity. Moreover, the micropolar fluids reduce the skin friction as compared to the Newtonian fluids. The magnitude of microrotation increases with increasing the magnitude of R and the micropolar parameters. The present results are in excellent comparison with the available literature results.  相似文献   

20.
We consider elements of K 1(S), where S is a proper surface over a p-adic field with good reduction, which are given by a formal sum ??(Z i , f i ) with Z i curves in S and f i rational functions on the Z i in such a way that the sum of the divisors of the f i is 0 on S. Assuming compatibility of pushforwards in syntomic and motivic cohomologies, our result computes the syntomic regulator of such an element, interpreted as a functional on H dR 2 (S), when evaluated on the cup product ????[??] of a holomorphic form ?? by the first cohomology class of a form of the second kind ??. The result is ?? i ??F ?? , log(f i ); F ?? ??gl,Z i , where F ?? and F ?? are Coleman integrals of ?? and ??, respectively, and the symbol in brackets is the global triple index, as defined in our previous work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号