首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we analyze a first-order time discretization scheme for a nonlinear geodynamo model and carry out the convergence analysis of this numerical scheme. It is concluded that our numerical scheme converges with first-order accuracy in the sense of L2L2-norm with respect to the velocity field uu and the magnetic field BB and with half-order accuracy in time for the total kinematic pressure P.  相似文献   

2.
In this paper, we present a finite difference scheme for the solution of an initial-boundary value problem of the Schrödinger-Boussinesq equation. The scheme is fully implicit and conserves two invariable quantities of the system. We investigate the existence of the solution for the scheme, give computational process for the numerical solution and prove convergence of iteration method by which a nonlinear algebra system for unknown Vn+1 is solved. On the basis of a priori estimates for a numerical solution, the uniqueness, convergence and stability for the difference solution is discussed. Numerical experiments verify the accuracy of our method.  相似文献   

3.
For a supersonic Euler flow past a straight-sided wedge whose vertex angle is less than the extreme angle, there exists a shock-front emanating from the wedge vertex, and the shock-front is usually strong especially when the vertex angle of the wedge is large. In this paper, we establish the L1 well-posedness for two-dimensional steady supersonic Euler flows past a Lipschitz wedge whose boundary slope function has small total variation, when the total variation of the incoming flow is small. In this case, the Lipschitz wedge perturbs the flow, and the waves reflect after interacting with the strong shock-front and the wedge boundary. We first obtain the existence of solutions in BV when the incoming flow has small total variation by the wave front tracking method and then establish the L1 stability of the solutions with respect to the incoming flows. In particular, we incorporate the nonlinear waves generated from the wedge boundary to develop a Lyapunov functional between two solutions containing strong shock-fronts, which is equivalent to the L1 norm, and prove that the functional decreases in the flow direction. Then the L1 stability is established, so is the uniqueness of the solutions by the wave front tracking method. Finally, the uniqueness of solutions in a broader class, the class of viscosity solutions, is also obtained.  相似文献   

4.
Parallel Galerkin domain decomposition procedures for wave equation are given. These procedures use implicit method in the sub-domains and simple explicit flux calculation on the inter-boundaries of sub-domains by integral mean method or extrapolation method. Thus, the parallelism can be achieved by these procedures. The explicit nature of the flux prediction induces a time step constraint that is necessary to preserve the stability. L2-norm error estimates are derived for these procedures. Experimental results are presented to confirm the theoretical results.  相似文献   

5.
The three-level explicit scheme is efficient for numerical approximation of the second-order wave equations. By employing a fourth-order accurate scheme to approximate the solution at first time level, it is shown that the discrete solution is conditionally convergent in the maximum norm with the convergence order of two. Since the asymptotic expansion of the difference solution consists of odd powers of the mesh parameters (time step and spacings), an unusual Richardson extrapolation formula is needed in promoting the second-order solution to fourth-order accuracy. Extensions of our technique to the classical ADI scheme also yield the maximum norm error estimate of the discrete solution and its extrapolation. Numerical experiments are presented to support our theoretical results.  相似文献   

6.
Based upon the streamline diffusion method, parallel Galerkin domain decomposition procedures for convection-diffusion problems are given. These procedures use implicit method in the sub-domains and simple explicit flux calculations on the inter-boundaries of sub-domains by integral mean method or extrapolation method to predict the inner-boundary conditions. Thus, the parallelism can be achieved by these procedures. The explicit nature of the flux calculations induces a time step limitation that is necessary to preserve stability. Artificial diffusion parameters δ are given. By analysis, optimal order error estimate is derived in a norm which is stronger than L2-norm for these procedures. This error estimate not only includes the optimal H1-norm error estimate, but also includes the error estimate along the streamline direction ‖β(uU)‖, which cannot be achieved by standard finite element method. Experimental results are presented to confirm theoretical results.  相似文献   

7.
In this paper we analyze a new dual mixed formulation of the elastodynamic system in polygonal domains by using an implicit scheme for the time discretization. After the analysis of stability of the fully discrete scheme, L in time, L2 in space a priori error estimates for the approximation of the displacement, the strain, the pressure and the rotational are derived. Numerical tests are presented which confirm our theoretical results.  相似文献   

8.
The aim of this paper is to develop high-order methods for solving time-fractional partial differential equations. The proposed high-order method is based on high-order finite element method for space and finite difference method for time. Optimal convergence rate O((Δt)2−α+Nr) is proved for the (r−1)th-order finite element method (r≥2).  相似文献   

9.
Some recent work on the ADI-FDTD method for solving Maxwell's equations in 3-D have brought out the importance of extrapolation methods for the time stepping of wave equations. Such extrapolation methods have previously been used for the solution of ODEs. The present context (of wave equations) brings up two main questions which have not been addressed previously: (1) when will extrapolation in time of an unconditionally stable scheme for a wave equation again feature unconditional stability, and (2) how will the accuracy and computational efficiency depend on how frequently in time the extrapolations are carried out. We analyze these issues here.  相似文献   

10.
We analyze arbitrary order linear finite volume transport schemes and show asymptotic stability in L 1 and L for odd order schemes in dimension one. It gives sharp fractional order estimates of convergence for BV solutions. It shows odd order finite volume advection schemes are better than even order finite volume schemes. Therefore the Gibbs phenomena is controlled for odd order finite volume schemes. Numerical experiments sustain the theoretical analysis. In particular the oscillations of the Lax–Wendroff scheme for small Courant numbers are correlated with its non stability in L 1. A scheme of order three is proved to be stable in L 1 and L .  相似文献   

11.
A second-order scheme for the Gray–Scott (GS) model used to describe the pattern formation is studied. The linear part of the GS equation for the time derivative and the viscous terms is discretized implicitly, while the other (or nonlinear) part of the GS equation explicitly. Galerkin finite element approximation methods are presented and analyzed, as well as methods for solving the resulting system of equations. The optimal L2L2-norm error estimates are derived. Numerical experiments are presented.  相似文献   

12.
In this paper we analyze a new dual mixed formulation of the elastodynamic system in polygonal domains. In this formulation the symmetry of the strain tensor is relaxed by the rotation of the displacement. For the time discretization of this new dual mixed formulation, we use an explicit scheme. After the analysis of stability of the fully discrete scheme, L in time, L2 in space a priori error estimates are derived for the approximation of the displacement, the strain, the pressure and the rotation. Numerical experiments confirm our theoretical predictions.  相似文献   

13.
Summary The numerical error of standard finite-difference schemes is analyzed at free boundaries of the Grad-Schlüter-Shafranov equation of plasma physics. A simple correction strategy is devised to eliminate (to leading order) the errors which arise as the free boundary crosses the rectangular grid at irregular locations. The resulting scheme can be solved by Gauss-Newton or Inverse iterations, or by multigrid iterations. Extrapolation (from 2nd to 3rd order of accuracy) is possible for the new scheme.Dedicated to the memory of Professor Lothar Collatz  相似文献   

14.
The two-grid method is studied for solving a two-dimensional second-order nonlinear hyperbolic equation using finite volume element method. The method is based on two different finite element spaces defined on one coarse grid with grid size H and one fine grid with grid size h, respectively. The nonsymmetric and nonlinear iterations are only executed on the coarse grid and the fine grid solution can be obtained in a single symmetric and linear step. It is proved that the coarse grid can be much coarser than the fine grid. A prior error estimate in the H1-norm is proved to be O(h+H3|lnH|) for the two-grid semidiscrete finite volume element method. With these proposed techniques, solving such a large class of second-order nonlinear hyperbolic equations will not be much more difficult than solving one single linearized equation. Finally, a numerical example is presented to validate the usefulness and efficiency of the method.  相似文献   

15.
In this work we design and analyze an efficient numerical method to solve two dimensional initial-boundary value reaction–diffusion problems, for which the diffusion parameter can be very small with respect to the reaction term. The method is defined by combining the Peaceman and Rachford alternating direction method to discretize in time, together with a HODIE finite difference scheme constructed on a tailored mesh. We prove that the resulting scheme is ε-uniformly convergent of second order in time and of third order in spatial variables. Some numerical examples illustrate the efficiency of the method and the orders of uniform convergence proved theoretically. We also show that it is easy to avoid the well-known order reduction phenomenon, which is usually produced in the time integration process when the boundary conditions are time dependent. This research has been partially supported by the project MEC/FEDER MTM2004-01905 and the Diputación General de Aragón.  相似文献   

16.
The Ostrovsky equation describes gravity waves under the influence of Coriolis force. It is known that solutions of this equation conserve the L2 norm and an energy function that is determined non-locally. In this paper we propose four conservative numerical schemes for this equation: a finite difference scheme and a pseudospectral scheme that conserve the norm, and the same types of schemes that conserve the energy. A numerical comparison of these schemes is also provided, which indicates that the energy conservative schemes perform better than the norm conservative schemes.  相似文献   

17.
We consider the original discontinuous Galerkin method for the first-order hyperbolic problems in d-dimensional space. We show that, when the method uses polynomials of degree k, the L2-error estimate is of order k+1 provided the triangulation is made of rectangular elements satisfying certain conditions. Further, we show the O(h2k+1)-order superconvergence for the error on average on some suitably chosen subdomains (including the whole domain) and their outflow faces. Moreover, we also establish a derivative recovery formula for the approximation of the convection directional derivative which is superconvergent with order k+1.  相似文献   

18.
In this work a system of two parabolic singularly perturbed equations of reaction–diffusion type is considered. The asymptotic behaviour of the solution and its partial derivatives is given. A decomposition of the solution in its regular and singular parts has been used for the asymptotic analysis of the spatial derivatives. To approximate the solution we consider the implicit Euler method for time stepping and the central difference scheme for spatial discretization on a special piecewise uniform Shishkin mesh. We prove that this scheme is uniformly convergent, with respect to the diffusion parameters, having first-order convergence in time and almost second-order convergence in space, in the discrete maximum norm. Numerical experiments illustrate the order of convergence proved theoretically.  相似文献   

19.
The paper focuses on the numerical study of electromagnetic scattering from two-dimensional (2D) large partly covered cavities, which is described by the Helmholtz equation with a nonlocal boundary condition on the aperture. The classical five-point finite difference method is applied for the discretization of the Helmholtz equation and a linear approximation is used for the nonlocal boundary condition. We prove the existence and uniqueness of the numerical solution when the medium in the cavity is y-direction layered or the number of the mesh points on the aperture is large enough. The fast algorithm proposed in Bao and Sun (2005) [2] for open cavity models is extended to solving the partly covered cavity problem with (vertically) layered media. A preconditioned Krylov subspace method is proposed to solve the partly covered cavity problem with a general medium, in which a layered medium model is used as a preconditioner of the general model. Numerical results for several types of partly covered cavities with different wave numbers are reported and compared with those by ILU-type preconditioning algorithms. Our numerical experiments show that the proposed preconditioning algorithm is more efficient for partly covered cavity problems, particularly with large wave numbers.  相似文献   

20.
A spectral element method for solving parabolic initial boundary value problems on smooth domains using parallel computers is presented in this paper. The space domain is divided into a number of shape regular quadrilaterals of size h and the time step k   is proportional to h2h2. At each time step we minimize a functional which is the sum of the squares of the residuals in the partial differential equation, initial condition and boundary condition in different Sobolev norms and a term which measures the jump in the function and its derivatives across inter-element boundaries in certain Sobolev norms. The Sobolev spaces used are of different orders in space and time. We can define a preconditioner for the minimization problem which allows the problem to decouple. Error estimates are obtained for both the h and p versions of this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号