首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A class of nonlinear elliptic optimal control problems with mixed control-state constraints arising, e.g., in Lavrentiev-type regularized state constrained optimal control is considered. Based on its first order necessary optimality conditions, a semismooth Newton method is proposed and its fast local convergence in function space as well as a mesh-independence principle for appropriate discretizations are proved. The paper ends by a numerical verification of the theoretical results including a study of the algorithm in the case of vanishing Lavrentiev-parameter. The latter process is realized numerically by a combination of a nested iteration concept and an extrapolation technique for the state with respect to the Lavrentiev-parameter.  相似文献   

2.
High(-mixed)-order finite difference discretization of optimality systems arising from elliptic nonlinear constrained optimal control problems are discussed. For the solution of these systems, an efficient and robust multigrid algorithm is presented. Theoretical and experimental results show the advantages of higher-order discretization and demonstrate that the proposed multigrid scheme is able to solve efficiently constrained optimal control problems also in the limit case of bang-bang control.  相似文献   

3.
We consider the fast and efficient numerical solution of linear-quadratic optimal control problems with additional constraints on the control. Discretization of the first-order conditions leads to an indefinite linear system of saddle point type with additional complementarity conditions due to the control constraints. The complementarity conditions are treated by a primal-dual active set strategy that serves as outer iteration. At each iteration step, a KKT system has to be solved. Here, we develop a multigrid method for its fast solution. To this end, we use a smoother which is based on an inexact constraint preconditioner.We present numerical results which show that the proposed multigrid method possesses convergence rates of the same order as for the underlying (elliptic) PDE problem. Furthermore, when combined with a nested iteration, the solver is of optimal complexity and achieves the solution of the optimization problem at only a small multiple of the cost for the PDE solution.  相似文献   

4.
In this paper, by means of a new efficient identification technique of active constraints and the method of strongly sub-feasible direction, we propose a new sequential system of linear equations (SSLE) algorithm for solving inequality constrained optimization problems, in which the initial point is arbitrary. At each iteration, we first yield the working set by a pivoting operation and a generalized projection; then, three or four reduced linear equations with a same coefficient are solved to obtain the search direction. After a finite number of iterations, the algorithm can produced a feasible iteration point, and it becomes the method of feasible directions. Moreover, after finitely many iterations, the working set becomes independent of the iterates and is essentially the same as the active set of the KKT point. Under some mild conditions, the proposed algorithm is proved to be globally, strongly and superlinearly convergent. Finally, some preliminary numerical experiments are reported to show that the algorithm is practicable and effective.  相似文献   

5.
We study an inexact inner–outer generalized Golub–Kahan algorithm for the solution of saddle-point problems with a two-times-two block structure. In each outer iteration, an inner system has to be solved which in theory has to be done exactly. Whenever the system is getting large, an inner exact solver is, however, no longer efficient or even feasible and iterative methods must be used. We focus this article on a numerical study showing the influence of the accuracy of an inner iterative solution on the accuracy of the solution of the block system. Emphasis is further given on reducing the computational cost, which is defined as the total number of inner iterations. We develop relaxation techniques intended to dynamically change the inner tolerance for each outer iteration to further minimize the total number of inner iterations. We illustrate our findings on a Stokes problem and validate them on a mixed formulation of the Poisson problem.  相似文献   

6.
Based on the ideas of norm-relaxed sequential quadratic programming (SQP) method and the strongly sub-feasible direction method, we propose a new SQP algorithm for the solution of nonlinear inequality constrained optimization. Unlike the previous work, at each iteration, the norm-relaxed quadratic programming subproblem (NRQPS) in our algorithm only consists of the constraints corresponding to an estimate of the active set, and the high-order correction direction (used to avoid the Maratos effect) is obtained by solving a system of linear equations (SLE) which also only consists of such a subset of constraints and gradients. Moreover, the line search technique can effectively combine the initialization process with the optimization process, and therefore (if the starting point is not feasible) the iteration points always get into the feasible set after a finite number of iterations. The global convergence is proved under the Mangasarian–Fromovitz constraint qualification (MFCQ), and the superlinear convergence is obtained without assuming the strict complementarity. Finally, the numerical experiments show that the proposed algorithm is effective and promising for the test problems.  相似文献   

7.
We introduce a class of models for multidimensional control problems that we call skip-free Markov decision processes on trees. We describe and analyse an algorithm applicable to Markov decision processes of this type that are skip-free in the negative direction. Starting with the finite average cost case, we show that the algorithm combines the advantages of both value iteration and policy iteration—it is guaranteed to converge to an optimal policy and optimal value function after a finite number of iterations but the computational effort required for each iteration step is comparable with that for value iteration. We show that the algorithm can also be used to solve discounted cost models and continuous-time models, and that a suitably modified algorithm can be used to solve communicating models.  相似文献   

8.
The Jacobi–Davidson (JD) algorithm is considered one of the most efficient eigensolvers currently available for non‐Hermitian problems. It can be viewed as a coupled inner‐outer iteration, where the inner one expands the search subspace and the outer one reduces the eigenpair residual. One of the difficulties in the JD efficient use stems from the definition of the most appropriate inner tolerance, so as to avoid useless extra work and keep the number of outer iterations under control. To this aim, the use of an efficient preconditioner for the inner iterative solver is of paramount importance. The present paper describes a fresh implementation of the JD algorithm with controlled inner iterations and block factorized sparse approximate inverse preconditioning for non‐Hermitian eigenproblems in a parallel computational environment. The algorithm performance is investigated by comparison with a freely available software package such as SLEPc. The results show that combining the inner tolerance control with an efficient preconditioning technique can allow for a significant improvement of the JD performance, preserving a good scalability. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper we present a new approach to solve a two-level optimization problem arising from an approximation by means of the finite element method of optimal control problems governed by unilateral boundary-value problems. The problem considered is to find a minimum of a functional with respect to the control variablesu. The minimized functional depends on control variables and state variablesx. The latter are the optimal solution of an auxiliary quadratic programming problem, whose parameters depend onu.Our main idea is to replace this QP problem by its dual and then apply the barrier penalty method to this dual QP problem or to the primal one if it is in an appropriate form. As a result we obtain a problem approximating the original one. Its good property is the differentiable dependence of state variables with respect to the control variables. Furthermore, we propose a method for finding an approximate solution of a penalized lower-level problem if the optimal solution of the original QP problem is known. We apply the result obtained to some optimal shape design problems governed by the Dirichlet-Signorini boundary-value problem.This research was supported by the Academy of Finland and the Systems Research Institute of the Polish Academy of Sciences.  相似文献   

10.
The cascadic multigrid method for elliptic problems   总被引:23,自引:0,他引:23  
Summary. The paper deals with certain adaptive multilevel methods at the confluence of nested multigrid methods and iterative methods based on the cascade principle of [10]. From the multigrid point of view, no correction cycles are needed; from the cascade principle view, a basic iteration method without any preconditioner is used at successive refinement levels. For a prescribed error tolerance on the final level, more iterations must be spent on coarser grids in order to allow for less iterations on finer grids. A first candidate of such a cascadic multigrid method was the recently suggested cascadic conjugate gradient method of [9], in short CCG method, whichused the CG method as basic iteration method on each level. In [18] it has been proven, that the CCG method is accurate with optimal complexity for elliptic problems in 2D and quasi-uniform triangulations. The present paper simplifies that theory and extends it to more general basic iteration methods like the traditional multigrid smoothers. Moreover, an adaptive control strategy for the number of iterations on successive refinement levels for possibly highly non-uniform grids is worked out on the basis of a posteriori estimates. Numerical tests confirm the efficiency and robustness of the cascadic multigrid method. Received November 12, 1994 / Revised version received October 12, 1995  相似文献   

11.
In this paper, we study robust iterative solvers for finite element systems resulting in approximation of steady-state Richards' equation in porous media with highly heterogeneous conductivity fields. It is known that in such cases the contrast, ratio between the highest and lowest values of the conductivity, can adversely affect the performance of the preconditioners and, consequently, a design of robust preconditioners is important for many practical applications. The proposed iterative solvers consist of two kinds of iterations, outer and inner iterations. Outer iterations are designed to handle nonlinearities by linearizing the equation around the previous solution state. As a result of the linearization, a large-scale linear system needs to be solved. This linear system is solved iteratively (called inner iterations), and since it can have large variations in the coefficients, a robust preconditioner is needed. First, we show that under some assumptions the number of outer iterations is independent of the contrast. Second, based on the recently developed iterative methods, we construct a class of preconditioners that yields convergence rate that is independent of the contrast. Thus, the proposed iterative solvers are optimal with respect to the large variation in the physical parameters. Since the same preconditioner can be reused in every outer iteration, this provides an additional computational savings in the overall solution process. Numerical tests are presented to confirm the theoretical results.  相似文献   

12.
Summary We consider the numerical solution of indefinite systems of linear equations arising in the calculation of saddle points. We are mainly concerned with sparse systems of this type resulting from certain discretizations of partial differential equations. We present an iterative method involving two levels of iteration, similar in some respects to the Uzawa algorithm. We relate the rates of convergence of the outer and inner iterations, proving that, under natural hypotheses, the outer iteration achieves the rate of convergence of the inner iteration. The technique is applied to finite element approximations of the Stokes equations.The work of this author was supported by the Office of Naval Research under contract N00014-82K-0197, by Avions Marcel Dassault, 78 Quai Marcel Dassault, 92214 St Cloud, France, and by Direction des Recherches Etudes et Techniques, 26 boulevard Victor, F-75996 Paris Armées, FranceThe work of this author was supported by Avions Marcel Daussault-Breguet Aviation, 78 quai Marcel Daussault, F-92214 St Cloud, France and by Direction des Recherches Etudes et Techniques, 26 boulevard Victor, F-75996 Paris Armées, FranceThe work of this author was supported by Konrad-Zuse-Zentrum für Informationstechnik Berlin, Federal Republic of Germany  相似文献   

13.
In this paper we report new results on the regularity of optimal controls for dynamic optimization problems with functional inequality state constraints, a convex time-dependent control constraint and a coercive cost function. Recently, it has been shown that the linear independence condition on active state constraints, present in the earlier literature, can be replaced by a less restrictive, positive linear independence condition, that requires linear independence merely with respect to non-negative weighting parameters, provided the control constraint set is independent of the time variable. We show that, if the control constraint set, regarded as a time-dependent multifunction, is merely Lipschitz continuous with respect to the time variable, then optimal controls can fail to be Lipschitz continuous. In these circumstances, however, a weaker Hölder continuity-like regularity property can be established. On the other hand, Lipschitz continuity of optimal controls is guaranteed for time-varying control sets under a positive linear independence hypothesis, when the control constraint sets are described, at each time, by a finite collection of functional inequalities.  相似文献   

14.
In this paper, we proposed a modified extragradient method for solving variational inequalities. The method can be viewed as an extension of the method proposed by He and Liao [Improvement of some projection methods for monotone variational inequalities, J. Optim. Theory Appl. 112 (2002) 111–128], by performing an additional projection step at each iteration and another optimal step length is employed to reach substantial progress in each iteration. We used a self-adaptive technique to adjust parameter ρρ at each iteration. Under certain conditions, the global convergence of the proposed method is proved. Preliminary numerical experiments are included to compare our method with some known methods.  相似文献   

15.
The development of numerical methods for strongly nonlinear convection–diffusion problems with dominant convection is an ongoing topic in numerical analysis. For inverse problems in this setting, there is a need of fast and accurate solvers. Here, we present operator splitting with a Riemann solver for the convective part and a relaxation method for the diffusive part, as a means to achieve this goal. Combined with the adjoint equation method this allows us to solve inverse problems within reasonable time frames and with modest computing power. As an example, the dual-well experiment is considered and the adjoint method is compared with a conjugate gradient algorithm and a Levenberg–Marquardt type of iteration method.  相似文献   

16.
In this paper we analyze a characteristic finite element approximation of convex optimal control problems governed by linear convection-dominated diffusion equations with pointwise inequality constraints on the control variable, where the state and co-state variables are discretized by piecewise linear continuous functions and the control variable is approximated by either piecewise constant functions or piecewise linear discontinuous functions. A priori error estimates are derived for the state, co-state and the control. Numerical examples are given to show the efficiency of the characteristic finite element method.  相似文献   

17.
H-Splittings and two-stage iterative methods   总被引:1,自引:0,他引:1  
Summary Convergence of two-stage iterative methods for the solution of linear systems is studied. Convergence of the non-stationary method is shown if the number of inner iterations becomes sufficiently large. TheR 1-factor of the two-stage method is related to the spectral radius of the iteration matrix of the outer splitting. Convergence is further studied for splittings ofH-matrices. These matrices are not necessarily monotone. Conditions on the splittings are given so that the two-stage method is convergent for any number of inner iterations.This work was supported in part by a Temple University Summer Research Fellowship.  相似文献   

18.
A interior point scaling projected reduced Hessian method with combination of nonmonotonic backtracking technique and trust region strategy for nonlinear equality constrained optimization with nonegative constraint on variables is proposed. In order to deal with large problems,a pair of trust region subproblems in horizontal and vertical subspaces is used to replace the general full trust region subproblem. The horizontal trust region subproblem in the algorithm is only a general trust region subproblem while the vertical trust region subproblem is defined by a parameter size of the vertical direction subject only to an ellipsoidal constraint. Both trust region strategy and line search technique at each iteration switch to obtaining a backtracking step generated by the two trust region subproblems. By adopting the l1 penalty function as the merit function, the global convergence and fast local convergence rate of the proposed algorithm are established under some reasonable conditions. A nonmonotonic criterion and the second order correction step are used to overcome Maratos effect and speed up the convergence progress in some ill-conditioned cases.  相似文献   

19.
This paper deals with the numerical simulation of the steady state two dimensional window Josephson junctions by finite element method. The model is represented by a sine-Gordon type composite PDE problem. Convergence and error analysis of the finite element approximation for this semilinear problem are presented. An efficient and reliable Newton-preconditioned conjugate gradient algorithm is proposed to solve the resulting nonlinear discrete system. Regular solution branches are computed using a simple continuation scheme. Numerical results associated with interesting physical phenomena are reported. Interface relaxation methods, which by taking advantage of special properties of the composite PDE, can further reduce the overall computational cost are proposed. The implementation and the associated numerical experiments of a particular interface relaxation scheme are also presented and discussed.  相似文献   

20.
This paper deals with the design of linear-phase finite impulse response (FIR) digital filters using weighted peak-constrained least-squares (PCLS) optimization. The PCLS error design problem is formulated as a quadratically constrained quadratic semi-infinite programming problem. An exchange algorithm with a new exchange rule is proposed to solve the problem. The algorithm provides the approximate optimal solution after a finite number of iterations. In particular, the subproblem solved at each iteration is a quadratically constrained quadratic programming. We can rewrite it as a conic optimization problem solvable in polynomial time. For illustration, numerical examples are solved using the proposed algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号