首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Under the surface: Ag nanoparticles are deposited onto the surface of commercially available SiO particles, and subsequent chemical etching results in the formation of nanoporous SiO without changing the chemical and physical properties of the original SiO. Moreover, chemical-assisted thermal annealing produces a shape-preserving Si-based multicomponent system, which exhibits high-performance electrochemical properties.  相似文献   

2.
3.
The method established previously for studying the etching rates of micro-scale silicon and silica was used to study the etching process of silicon and silica on the Si(100)surface. Photolithography was used to pattern a positive photoresist mask to confine the etching area,and the atomic force microscopy was used to probe the etched surface. The lateral etching rate of silicon or silica on the silicon surface was defined,and the lateral and longitudinal etching rates of silicon and silica on the Si(100)surface in 40% ammonium fluoride aqueous solution were measured. The effect of the dissolved oxygen on the etching rates was studied by bubbling the solution with high purity nitrogen. The lateral and longitudinal etching rates of silicon and silica on the(100)surface increase with temperatures except for the lateral etching rate of silica in a N2 -bubbled solution which probably reaches the limit of diffusion controlled reaction. The etching rates of silicon and thermal silica on the Si(100)surface show remarkable difference with that on the Si(111)surface in both air-saturated and N2 -bubbled solutions. The apparent activation energies for the silicon and silica etching processing in ammonium fluoride solution were obtained from the etching rates at different temperatures in the range 20. 6-34. 1℃. The similarity of the apparent activation energies for the etching processing of silicon and silica on the(100)surface to that on the(111)surface probably suggests that the rate-determined-step is the same in both cases. A lot of gas bubbles are seen to aggregate on the surface in silicon dissolution process at 38. 2℃,and it is found that the gas bubbles have great influence on the silicon etching rate. The formation of bubbles accelerates the silicon dissolution at the beginning but blocks the etching as the bubbles gradually aggregate on the surface.  相似文献   

4.
电化学微/纳加工分辨率的影响因素及对策   总被引:1,自引:0,他引:1  
The etching resolution of electrochemical fabrication technique is influenced significantly by the diffusion layer of the etchant. It has been shown that a fast etching rate can achieve higher etching resolution due to so-called heterogeneous scavenging effect, while a lower etching rate will result in rather lower etching resolution. For the latter case, the confined etchant layer technique(CELT) has been employed to improve the etching resolution. i. e., a certain redox couple which can consume the etchant homogeneously and rapidly was added to the solution. The homogeneous scavenging effect confined the etchant within a narrow layer around the electrode surface and much improved etching resolution was achieved. Using the CELT and a needle-shaped microelectrode, an etching spot of several micro-meters was obtained at silicon wafer surface.  相似文献   

5.
Silicon bulk etching is an important part of micro-electro-mechanical system (MEMS) technology. In this work, a novel etching method is proposed based on the vapor from tetramethylammonium hydroxide (TMAH) solution heated up to boiling point. The monocrystalline silicon wafer is positioned over the solution surface and can be anisotropically etched by the produced vapor. This etching method does not rely on the expensive vacuum equipment used in dry etching. Meanwhile, it presents several advantages like low roughness, high etching rate and high uniformity compared with the conventional wet etching methods. The etching rate and roughness can reach 2.13 μm/min and 1.02 nm, respectively. Furthermore, the diaphragm structure and Al-based pattern on the non-etched side of wafer can maintain intact without any damage during the back-cavity fabrication. Finally, an etching mechanism has been proposed to illustrate the observed experimental phenomenon. It is suggested that there is a water thin film on the etched surface during the solution evaporation. It is in this water layer that the ionization and etching reaction of TMAH proceed, facilitating the desorption of hydrogen bubble and the enhancement of molecular exchange rate. This new etching method is of great significance in the low-cost and high-quality micro-electro-mechanical system industrial fabrication.  相似文献   

6.
The mechanism of gallium arsenide etching in a chlorine-argon plasma was studied. The absorption-desorption model was proposed which explains an increase in etching rate upon chlorine dilution with argon by enhancement of the efficiency of active site cleaning with plasma UV radiation and ion fluxes. The processes of desorption of etching products from the surface by ions and UV photons were shown to be energetically favored. The amount of active sites cleaned per ion or photon was calculated. The addition of argon was assumed to change the proportion of active sites. Procedures for calculating fluxes of reactive species onto the surface and the probability of ultraviolet light and ion-induced desorption were detailed.  相似文献   

7.
A quantitative mechanism of particle removal from silicon wafer surfaces by a wet chemical cleaning process is proposed. The particles are removed from the surface due to the combined effects of chemical etching and a net repulsive interaction between the particle and surface. The mechanism suggests that a critical etching depth, which has been determined theoretically, and an optimal etching rate, which can be determined from etching profile calculation, are required for particle removal. The study will help in the optimization of cleaning processes and formulation of superior cleaning solutions.  相似文献   

8.
Achieving optimal hydrophobicity of polymer materials especially polymer–matrix composites is important for many material applications. Herein the interplay of factors determining hydrophobic surface is presented during CF4 plasma treatments which lead to functionalization as well as selective polymer–matrix etching. The continuous exposure to plasma reactive species induces functionalization and etching on the surface, which decides the surface morphology and surface chemistry. Consequently, exothermic processes during the plasma–surface interactions are another important factor which influences the surface chemistry and etching rate of the material. The results demonstrate that despite etching and increasing surface roughness, the major contribution to hydrophobic character is dependent on the number of carbon atoms populated with fluorine, whereas the temperature is a deciding factor for type of created bonds. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Atmospheric plasma etching has been increasingly applied in the fabrication of optical elements for high efficiency and near-zero damage to optical surfaces. However, the non-linearity of material removal rate is inevitable because of the thermal effect of inductively coupled plasma (ICP) etching for fused silica. To apply ICP to figure fused silica surface, the time-varying non-linearity between material removal rate and dwell time is analyzed. An experimental model of removal function is established considering the time-varying non-linearity. According to this model, an algorithm based on nested pulsed iterative method is proposed for calculating and compensating this time-varying non-linearity by varying the dwell time. Simulation results show that this algorithm can calculate and adjust the dwell time accurately and remove surface errors with rapid convergence. Surface figuring experiments were set up on the fused silica planar work-pieces with a size of 100 mm (width) × 100 mm (length) × 10 mm (thickness). With the compensated dwell time, the surface error converges rapidly from 4.556 λ PV (peak-to-valley) to 0.839 λ PV within 13.2 min in one iterative figuring. The power spectral density analysis indicates that the spatial frequency errors between 0.01 and 0.04 mm?1 are smoothed efficiently, and the spatial frequency errors between 0.04 and 0.972 mm?1 are also corrected. Experimental results demonstrate that the ICP surface figuring can achieve high convergence for surface error reduction using the compensated dwell time. Therefore, the ICP surface figuring can greatly improve surface quality and machining efficiency for fused silica optical elements.  相似文献   

10.
Model films of poly(ethylene terephthalate) were treated by oxygen plasma in order to quantify the etching rate and estimate the contribution of charged and neutral particles to the reaction probability. Model films with a thickness of 50 nm were deposited on a quartz crystal of a microbalance (QCM) by spin‐coating technique. The samples were exposed to oxygen plasma with the positive ion density of 4 × 1015 m?3 and neutral oxygen atom density of 6 × 1021 m?3. The etching rate was determined from the QCM signal and was 4.7 nm s?1. The etching was found rather inhomogeneous as the atomic force microscopic images showed an increase of the surface roughness as a result of plasma treatment. The model films were completely removed from the surface of the quartz crystals in about 12 s. Knowing the etching rate and the flux of oxygen atoms to the surface allowed for calculation of the reaction probability which was found to be rather low at the value of 1.6 × 10?4. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Chemical etching is widely applied to texture the surface of sputter-deposited zinc oxide for light scattering in thin-film silicon solar cells. Based on experimental findings from the literature and our own results we propose a model that explains the etching behavior of ZnO depending on the structural material properties and etching agent. All grain boundaries are prone to be etched to a certain threshold, that is defined by the deposition conditions and etching solution. Additionally, several approaches to modify the etching behavior through special preparation and etching steps are provided.  相似文献   

12.
Dry etching of compound semiconductors is becoming increasingly important as design ruler shrink for electronic devices. For photonic device applications, dry or plasma etching is used fin- device isolation, fine-line pattern transfer, and fabrication of optical quality interfaces. As has been well established for Si and W. plasma etching at reduced temperatures can provide superior critical dimension control and obviate the need for operating at high bias voltages that produce excessively energetic ion bombardment t. In this work, we explore low-temperature (–60 C to +60 C) etching of the compound semiconductors GaAs, AlGaAs, and AlAs, In addition to improving etch anisotropy, which provides critical dimension control, rye find thut processing at lower temperatures improves microuniformity and reduces loading effects. At high lemperaturcs, where larger samples are observed to etch more slowly than smaller pieces (loading effect), etching rates appear limited bv reactant transport to the wafer. In this regime, both microuniformity and macrouniformity arc poor. As the temperature is reduced, the etching rate becomes limited by surfitce processes us a residue containing the semiconductor elements, etchant gases, and residual background gases forms on the surface. hi this regime, the etch rare becomes independent of surface area and uniformity is improved.  相似文献   

13.
Atmosphere plasma etching methods have been demonstrated efficient in the etching of fused silica or ULE. However, because of the high chemical stability of silicon carbide (SiC), the conventional plasma etching methods seem incapable of obtaining a high material removal rate (MRR). We have found that MRR will be significantly improved while the electric spark appears between the plasma and the SiC surface. As a result, a new plasma source is designed to generate stable arc at the surface. Due to the generation of arc, the MRR of 0.35 mm3/min is obtained, about 10 times as high as the conventional method. In this paper, the removal characteristics and the thermal effect of this method are presented. MRR and the surface temperature are investigated in dependence on plasma parameters: RF power, travel speed of plasma source, SF6 gas flow and O2 gas flow. Due to the negligible thermal effect, the surface figuring can be achieved using the conventional dwell time method. The shape error of a flat SiC surface is corrected, verifying the figuring capability and the effectiveness of this method.  相似文献   

14.
Fluorocarbon-based chemistries were used to study the effect of wafer temperature on the etch of high aspect ratio hardmasks composed of SiO2 and SiNx layers. It is found that etch stop can occur easily at high temperature. The rate of polymer deposition plays an important role in etch stop. The etching rates were found to be inversely proportional to the wafer temperature. Such a relation indicates a negative activation energy in the rate expression of hardmask etching using fluorocarbon plasma. It also implies that in hardmask etching, complicated gas-surface, but not simple one-step, reactions are involved. Different wafer surface temperature can provide different degree of activation for etching reactions. Analysis of etching rate and optical emission trends indicates that CFx may contribute more than F does in the etch of SiO2 and SiNx, since polymer-rich etching chemistries were used. Based on the temperature-dependent etching rate, we propose a reaction mechanism for the reaction trends observed in hardmask etching.  相似文献   

15.
The same underlying mathematical structure characterizes some of the most popular multicomponent models for the prediction of surface free energies and adhesion works. After a brief illustration of the general methods for the computation of liquid and solid components in typical multicomponent theories, it is shown that both model definition and component estimate may take great advantage from application of Principal Component Analysis techniques, owing to the very peculiar structure of adhesion work equations. It is also put into evidence that a problem of scale multiplicity arises as a consequence of the symmetries involved in the model equations for adhesion work and surface free energy. A special discussion is devoted to the specific cases of van Oss–Chaudhury–Good acid–base theory, Qin–Chang model and extended Drago theory, which constitute the most common multicomponent models usually applied in the analysis of adhesion phenomena.   相似文献   

16.
The processes during chemical and electrochemical etching of Al-doped ZnO are investigated utilizing a scanning flow cell setup with online detection of dissolved Zn ions. The rate of chemical dissolution was found to be a linear function of buffer and proton concentration in near neutral pH solutions according to a transport limited reaction. In contrast, electrochemical etching is limited by the kinetics of the reaction and increases linearly with the imposed current density. Due to this fundamental difference, the dissolution of Zn can be either uniform over the whole surface or highly localized at active sites like grain boundaries. A combined approach of chemical etching and the well-controllable galvanostatic dissolution thus allows a fine adjustment of the ZnO:Al surface texture for applications in silicon thin film photovoltaic cells in order to improve their overall energy conversion efficiency.  相似文献   

17.
The objective of this work was to investigate whether or not the hydrogen bonding interaction between polymer and crystal surface can be detected by the etching pattern changes in the presence of polymers. The (010) face of acetaminophen single crystal was used as a model solid surface. The etching patterns on the (010) face of acetaminophen crystal by water are in the directions of a- and c-axes, which are the same as the directions of the dominant attachment energies on the (010) face. In the presence of polymer, the hydrogen bonding interactions between adsorbed polymer and crystal surface can affect surface diffusion of acetaminophen molecules and change the etching patterns in the direction of a-axis, i.e., the direction of one hydrogen bond chain. Studies with 2-hydroxyethyl cellulose (HEC), hydroxypropyl cellulose (HPC), hydroxypropyl methylcellulose (HPMC) and poly(vinyl alcohol) (PVA) showed that polymers, which can form hydrogen bonds with acetaminophen crystal surface, can change etching patterns in the direction of a-axis. Study with Dextran suggested that if a polymer cannot form hydrogen bonds with crystal surface due to steric repulsion, it will not change the etching pattern in the direction of a-axis. Studies with poly(ethylene glycol) (PEG) and poly(propylene glycol) (PPG) further confirmed that only if a polymer can form hydrogen bonds with acetaminophen on crystal surface, the etching patterns in the direction of a-axis will be affected. The study results suggest that in the presence of polymers, the etching pattern change in the direction of hydrogen bond chain, the a-axis of acetaminophen crystals, can be used to indicate the existence of the hydrogen bonding interactions between adsorbed polymers and acetaminophen crystal surface.  相似文献   

18.
Micromachining of crosslinked PTFE (polytetrafluoroethylene) using synchrotron radiation direct photo-etching method has been demonstrated. High aspect-ratio microfabrication was carried out. The etching rate of crosslinked PTFE was higher than that of non-crosslinked PTFE. Through the etching rate measurements of various samples, it was found that synchrotron radiation etching rate of crosslinked PTFE only depends on the degree of crosslinking, neither molecular weight nor crystallinity. The effect of molecular motion on etching process was discussed from temperature dependence data on etching rate. Furthermore, the surface region of synchrotron radiation irradiated sample was investigated by Fourier transform infrared spectroscopy and the experimental result showed that the modification induced by synchrotron radiation proceeded before desorption.  相似文献   

19.
The mass and heat transfer dynamics of evaporating multicomponent alcohol/water droplets have been probed experimentally by examining changes in the near surface droplet composition and average droplet temperature using cavity-enhanced Raman scattering (CERS) and laser-induced fluorescence (LIF). The CERS technique provides a sensitive measure of the concentration of the volatile alcohol component in the outer shell of the droplet, due to the exponential relationship between CERS intensity and species concentration. Such volatile droplets, which are probed on a millisecond time scale, evaporate nonisothermally, resulting in both temperature and concentration gradients, as confirmed by comparisons between experimental measurements and quasi-steady state model calculations. An excellent agreement between the experimental evaporation trends and quasi-steady state model predictions is observed. An unexpectedly slow evaporation rate is observed for the evaporation of 1-propanol from a multicomponent droplet when compared to the model; possible explanations for this observation are discussed. In addition, the propagation depth of the CERS signal, and, therefore, the region of the droplet from which compositional measurements are made, can be estimated. Such measurements, when considered in conjunction with quasi-steady state theory, can allow droplet temperature gradients to be measured and vapor pressures and activity coefficients of components within the droplet to be determined.  相似文献   

20.
Changes in surface properties and composition of the surface layer of polycarbonate of the Lexan LS2 and Lexan 8010 brands after treatment in the positive column of glow-discharge oxygen plasma have been studied. The amount of the polymer loaded for processing has been shown to affect the kinetics of etching and modifying the polycarbonate surface. It has been found that an increase in the amount of the polymer in the plasma reduces its etching rate and also affects the electrical parameters of plasma, which in turn can cause a change in the flux of active species onto the polymer surface and, consequently, a change in the rate of plasma-initiated heterogeneous processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号