首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Faruk Toksoy 《哲学杂志》2013,93(28):2469-2483
Abstract

By applying ab initio calculation within density functional theory (DFT), we study the structure parameters, electronic band structure, elastic coefficients, polycrystalline elastic properties, anisotropy factors and Debye temperature of ferroelectric and paraelectric phases of LiTaO3 within the generalised gradient approximation at ambient pressure. The atomic structure in both phases is fully relaxed and the lattice constant, angle and atomic positions are well consistent with experimental values. The computed single-crystal elastic coefficients indicate that mechanical stability of LiTaO3 in both phases is confirmed using the generalised Born criteria. The shear, bulk and Young’s modulus, Poisson’s ratio, and Vickers hardness were computed according to theoretical elastic constants by Voight–Reuss–Hill method. Several anisotropy factors and indexes are computed to illustrate mechanical anisotropy. Both phases are shown to be weakly anisotropic. The Debye temperature is estimated using the longitude and transverse elastic wave velocity of the ideal polycrystalline LiTaO3 aggregates. We have found that LiTaO3 in both phases has an indirect energy band gap. The differences in the electronic structure and density of states for both phases are quite small. Our results indicate that the mechanical and bonding properties of both phases are very similar. The obtained results were compared with the available experimental and theoretical values.  相似文献   

2.
Using plane-wave pseudopotential (PW-PP) method based on the density functional theory (DFT) within the Local Density Approximation (LDA), we have performed a study of the structural and elastic properties of selected Hf2InC compound belonging to the so-called MAX phases. The calculated equilibrium lattice parameters are in accordance with the experimental results. The result of high pressures on the lattice parameter shows that the contractions along the c-axis were more than along the a-axis. In order to gain further information on the mechanical properties, we have also calculated the anisotropy factor, Poison's ratio, Young's modulus, sound velocities and Debye temperature for Hf2InC.  相似文献   

3.
Based on first-principles calculations, we have investigated the elastic properties and electronic structure of a new MAX compound (Cr0.5V 0.5)2GeC. The obtained lattice parameters agree very well with available experimental and theoretical data. Elastic constants are calculated, then the mechanical properties such as compressibility, ductility and stiffness, especially elastic anisotropy of (Cr0.5V 0.5)2GeC are discussed in detail. The calculated charge density and density of state exhibit a mixture of covalent and ionic features in (Cr0.5V 0.5)2GeC due to the strong hybridization of C 2p with Cr 5d and V 4d states. The coexistence of the stronger and stiffer Cr–C and V–C covalent bonds reveals the underlying mechanism for the higher bulk modulus of (Cr0.5V 0.5)2GeC.  相似文献   

4.
J. Sun ¶  B. Jiang 《哲学杂志》2013,93(29):3133-3144
Ab initio calculations have been used to investigate the phase stability, mechanical properties and electronic structure of ZrCr2 Laves phase compounds, based on the method of augmented plane waves plus local orbitals with the generalized gradient approximation. The calculated lattice constants for the C15, C36 and C14 structures are in good agreement with experimental values. The calculation of heats of formation showed that C15 is a ground-state phase, whereas C36 is an intermediate phase and C14 the high-temperature phase. The elastic constants and elastic moduli for the C15 structure were calculated systematically and compared with experiments and previous theoretical calculations. The intrinsic and extrinsic stacking fault energies are found to be 112 and 98?mJ?m?2, respectively. The equilibrium separations between Schockley are also predicted using the calculated elastic moduli and stacking fault energies. Finally, the calculated electronic structures of these Laves phases are discussed based on these results.  相似文献   

5.
A comprehensive investigation of the structural, elastic, and lattice dynamical properties for ZrMo2 and HfMo2 with C14, C15, C36, and CeCu2 phases are conducted using density functional total energy calculations. The results have showed that C15 phase for both materials is energetically more stable than C14, C36 and CeCu2 phases. We have also estimated the mechanical behaviours of these compounds, including mechanical stability, bulk modulus, Young's modulus, shear modulus, Poisson's ratio, ductility, and anisotropy. Additionally, the lattice dynamical properties are analyzed and discussed exhaustively for these phases. The calculated properties agree well with available experimental and theoretical data.  相似文献   

6.
First-principles calculations were performed to investigate structural, elastic and electronic properties of the first discovered superconducting nanolaminate Mo2GaC in comparison with isostructural Ga-containing phases V2GaC and Nb2GaC. As a result, the optimized lattice parameters, independent elastic constants, bulk moduli, compressibility, shear moduli, Young’s moduli and Poisson’s ratio were evaluated. Besides, electronic bands, densities of states (DOS), total and site-projected l-decomposed DOS at the Fermi level, as well as the shapes of the Fermi surfaces for these Ga-containing nanolaminates were obtained and analyzed in comparison with the available theoretical and experimental data.  相似文献   

7.
Using first-principles calculations, we predict mechanical and thermodynamic properties of both Mg17Al12 and Mg2Sn precipitates in Mg–Al–Sn alloys. The elastic properties including the polycrystalline bulk modulus, shear modulus, Young’s modulus, Lame’s coefficients and Poisson’s ratio of both Mg17Al12 and Mg2Sn phases are determined with the Voigt–Reuss–Hill approximation. Our results of equilibrium lattice constants agree closely with previous experimental and other theoretical results. The ductility and brittleness of the two phases are characterized with the estimation from Cauchy pressure and the value of B/G. Mechanical anisotropy is characterized by the anisotropic factors and direction-dependent Young’s modulus. The higher Debye temperature of Mg17Al12 phase means that it has a higher thermal conductivity and strength of chemical bonding relative to Mg2Sn. The anisotropic sound velocities also indicate the elastic anisotropies of both phase structures. Additionally, density of states and Mulliken population analysis are performed to reveal the bonding nature of both phases. The calculations associated with phonon properties indicate the dynamical stability of both phase structures. The temperature dependences of thermodynamic properties of the two phases are predicted via the quasi-harmonic approximation.  相似文献   

8.
The phonon spectrum; crystal structure of the polar phase; spontaneous polarization; dielectric constant, piezoelectric, and elastic moduli tensors for free_standing and substrate_supported superlattices mBaTiO3/nSrTiO3 (with m = n = 1–4) were calculated within the density functional theory. The simulation of properties of the disordered Ba0.5Sr0.5TiO3 solid solution using two special quasirandom SQS-4 structures and their comparison with the properties of the superlattices revealed a tendency of the BaTiO3-SrTiO3 system to superstructure ordering and showed that the superlattices are thermodynamically quite stable. The ground state of the free-standing superlattice corresponds to the monoclinic polar phase Cm, which transforms to the tetragonal polar phase P4mm under in-plane compressive strain of the superlattice and to the orthorhombic polar phase Amm2 under in-plane tensile strain. With a change in the in-plane lattice parameter, in the vicinity of boundaries between neighboring polar phases, some optical and acoustic modes soften and some components of the static dielectric constant, piezoelectric, and elastic moduli tensors diverge critically.  相似文献   

9.
The structural, elastic, and electronic properties of SrZrN2 under pressure up to 100?GPa have been carried out with first-principles calculations based on density functional theory. The calculated lattice parameters at 0?GPa and 0?K by using the GGA-PW91-ultrasoft method are in good agreement with the available experimental data and other previous theoretical calculations. The pressure dependence of the elastic constants and the elastic-dependent properties of SrZrN2, such as bulk modulus B, shear modulus G, Young's modulus E, Debye temperature Θ, shear and longitudinal wave velocity VS and VL, are also successfully obtained. It is found that all elastic constants increase monotonically with pressure. When the pressure increases up to 140?GPa, the obtained elastic constants do not satisfy the mechanical stability criteria and a phase transition might has occurred. Moreover, the anisotropy of the directional-dependent Young's modulus and the linear compressibility under different pressures are analysed for the first time. Finally, the pressure dependence of the total and partial densities of states and the bonding property of SrZrN2 are also investigated.  相似文献   

10.
Structural, elastic and electronic properties of strontium chalcogenides SrX (X = O, S and Se) in the B1 (NaCl) and B2 (CsCl) phases were investigated in the present work. The calculations were performed using density functional theory (DFT) within generalized gradient approximation (GGA) using scalar relativistic Vanderbilt-type ultrasoft pseudopotentials. Results for structural properties of both phases, the pressure at which transition from B1 to B2 phase occurs and the volume compression ratio for each compound were reported. Elastic properties of the B1 phase of these compounds, such as elastic constants C11, C12, and C44, shear modulus (G), Young's modulus (E), Poisson's ratio (σ), Kleinman parameter (ξ), and anisotropy factor (A) were also calculated at ambient conditions. The band gaps and density of states were studied too for the B1 structure of these compounds. The present results were compared with the available experimental and other theoretical results, and found to be in satisfactory agreement with them.  相似文献   

11.
We have performed ab-initio total energy calculations using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT) to study structural, elastic, mechanical, electronic, and optical properties of cubic Mg2TiO4. The calculated lattice parameter a is in good agreement with the experimental values. The independent elastic constants are calculated. The mechanical properties including bulk, shear and Young’s modulus, Poisson’s coefficient, compressibility and Lamé’s constants are obtained using the Voigt-Reuss-Hill method. Debye temperature is estimated using the Debye-Grüneisen model. Band structure, density of states and charge densities are shown and analyzed. In order to clarify the mechanism of optical transitions of cubic Mg2TiO4, the complex dielectric function, refractive index, extinction coefficient, reflectivity, absorption coefficient, loss function and complex conductivity function are calculated.  相似文献   

12.
The structural properties and pressure-induced phase transitions of CrO2 have been investigated using the pseudopotential plane-wave method based on the density functional theory (DFT). The rutile-type (P42/mnm), CaCl2-type (Pnnm), pyrite-type (Pā3), and CaF2-type (Fm-3m) phases of CrO2 have been considered. The structural properties such as lattice parameters, bulk moduli and its pressure derivative are consistent with the available experimental data. The second-order phase-transition pressure of CrO2 from the rutile phase to CaCl2 phase is 10.9?GPa, which is in good agreement with the experimental result. The sequence of these phases is rutile-type?→?CaCl2-type?→?pyrite-type?→?CaF2-type with the phase-transition pressures 10.9, 23.9, and 144.5?GPa, respectively. The equation of state of different phases has also been presented. It is more difficult to compress with the increase of pressure for different phases of CrO2.  相似文献   

13.
The electronic structure, elastic and optical properties of Cu2ZnGe(SexS1 ? x)4 alloys are systematically analysed using first-principles calculations. The lattice parameters agree well with the theoretical and experimental values which are searched as complete as possible indicating our calculations are reliable. The elastic properties are investigated first and are compared with the similar compounds CZTS and CZTSe due to the unavailable experimental data currently. The variation of the optical properties caused by the increase of Se/S ratio is discussed. The static optical constants are calculated and the corrected values are also predicted according to the available experimental data.  相似文献   

14.
We investigate the structural, phase transition and elastic properties of SnO2 in the rutile-type, pyrite-type, ZrO2-type and cotunnite-type phases by the plane-wave pseudopotential density functional theory method. The lattice constants, bulk modulus and its pressure derivative are well consistent with the available experimental and other theoretical data. Also, we find that the rutile→pyrite, pyrite→ZrO2 and ZrO2→cotunnite phase transition occur at 12.9, 59.1 and 111.1 GPa, which are in better agreement with the experimental results than those of Gracia et al. (2007). Moreover, we obtain the pressure dependences of elastic constants for the four structures.  相似文献   

15.
刘丽  韦建军  安辛友  王雪敏  刘会娜  吴卫东 《中国物理 B》2011,20(10):106201-106201
The phase transition of gallium phosphide (GaP) from zinc-blende (ZB) to a rocksalt (RS) structure is investigated by the plane-wave pseudopotential density functional theory (DFT). Lattice constant a0, elastic constants cij, bulk modulus B0 and the pressure derivative of bulk modulus B0' are calculated. The results are in good agreement with numerous experimental and theoretical data. From the usual condition of equal enthalpies, the phase transition from the ZB to the RS structure occurs at 21.9 GPa, which is close to the experimental value of 22.0 GPa. The elastic properties of GaP with the ZB structure in a pressure range from 0 GPa to 21.9 GPa and those of the RS structure in a pressure range of pressures from 21.9 GPa to 40 GPa are obtained. According to the quasi-harmonic Debye model, in which the phononic effects are considered, the normalized volume V/V0, the Debye temperature θ, the heat capacity Cv and the thermal expansion coefficient α are also discussed in a pressure range from 0 GPa to 40 GPa and a temperature range from 0 K to 1500 K.  相似文献   

16.
Ab initio calculations, based on norm-conserving nonlocal pseudopotentials and density functional theory (DFT), are performed to investigate the structural, elastic, dielectric, and vibrational properties of aluminum arsenide AlAs with zinc-blende (B3) structure and nickel arsenide (B81) structure under hydrostatic pressure. Firstly, the path for the phase transition from B3 to B81 is confirmed by analyzing the energies of different structures, which is in good agreement with previous theoretical results. Secondly, we find that the elastic constants, bulk modulus, static dielectric constants, and the optical phonon frequencies are varying in a nearly linear manner under hydrostatic pressure. What is more, the softening mode of transversal acoustic mode at X point supports the phase transition in AlAs.  相似文献   

17.
This paper calculates the elastic,thermodynamic and electronic properties of pyrite (P a3ˉ) RuO2 by the plane-wave pseudopotential density functional theory (DFT) method.The lattice parameters,normalized elastic constants,Cauchy pressure,brittle–ductile relations,heat capacity and Debye temperature are successfully obtained.The Murnaghan equation of state shows that pyrite RuO2 is a potential superhard material.Internal coordinate parameter increases with pressure,which disagrees with experimental data.An analysis based on electronic structure and the pseudogap reveals that the bonding nature in RuO2 is a combination of covalent,ionic and metallic bonding.A study of the elastic properties indicates that the pyrite phase is isotropic under usual conditions.The relationship between brittleness and ductility shows that pyrite RuO2 behaves in a ductile matter at zero pressure and the degree of ductility increases with pressure.  相似文献   

18.
The elastic, electronic and thermodynamic properties of fluoro-perovskite KZnF3 have been calculated using the full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential is treated with the generalized gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE). Also, we have used the Engel and Vosko GGA formalism (GGA-EV) to improve the electronic band structure calculations. The calculated structural properties are in good agreement with available experimental and theoretical data. The elastic constants C ij are calculated using the total energy variation with strain technique. The shear modulus, Young’s modulus, Poisson’s ratio and the Lamé coefficients for polycrystalline KZnF3 aggregates are estimated in the framework of the Voigt-Reuss-Hill approximations. The ductility behavior of this compound is interpreted via the calculated elastic constants C ij . Electronic and bonding properties are discussed from the calculations of band structure, density of states and electron charge density. The thermodynamic properties are predicted through the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variation of bulk modulus, lattice constant, heat capacities and the Debye temperature with pressure and temperature are successfully obtained.  相似文献   

19.
The lattice parameters, band structure, density of state and elastic constant of RE-doped CeO2 (RE=Sm, Gd, Dy), the buffer material for coated HTS conductors, are calculated using the plane-wave method with pseudopotentials based on the density functional theory (DFT) of first-principle. The rule and mechanism of the effect of rare earth impurity on the critical thickness of the CeO2 buffer layer are investigated. It is found that, in the range of the calculation, the changes of the lattice volume V and elastic constant E* of CeO2 with the impurity are mainly determined by the increased electrons δn e of the system. The relationship of the elastic constant E* and increased electrons δn e is established. It is indicated that the critical thickness of the CeO2 single buffer layer doped with Sm, Gd, and Dy may be enhanced by 22%, 43% and 33%, respectively. Supported by the Youth Scientific Research Project of Southwest Jiaotong University (Grant No. 2007Q017), the National Natural Science Foundation of China (Grant No. 50588201), and the Ministry of Science and Technology of China (Grant No. 2007CB616906)  相似文献   

20.
The structural and elastic properties of CrO2 in the rutile phase under high pressures have been investigated using pseudopotential plane-wave method based on density functional theory. The optimized lattice parameters and the bulk modulus at zero pressure agree well with available experimental and theoretical data. The elastic constants C 11, C 12, C 44, C 33, C 13, and C 66 at zero pressure are calculated to be 359.91, 264.69, 143.28, 309.45, 218.45, and 260.74 GPa, respectively. Elastic constants, bulk modulus, shear modulus, Young's modulus, and Poisson's ratio under pressures are obtained. Our results indicate that the rutile phase is mechanically stable below 11.99 GPa. The elastic anisotropy of rutile phase under pressures has also been predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号