首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Water-insoluble β-cyclodextrin polymer (β-CDP) crosslinked by citric acid was obtained with a yield of 65% through an environment friendly synthesis procedure. FT-IR spectra disclosed that the hydroxyl groups of β-CD had reacted and condensated with the carboxyl groups of citric acid, and at the same time the structural characteristics of β-CD were essentially maintained in β-CDP. The β-CDP exhibited notable adsorption capability toward phenol (q max = 13.8 mg g?1) and especially large adsorption capability toward methylene blue (q max = 105 mg g?1). The concentration of methylene blue in water could be reduced to 0.11 mg L?1 by the β-CDP, indicating the excellent adsorption sensitivity of β-CDP toward methylene blue. The adsorption results disclosed that the interior cavity and inclusion property of β-CD were maintained in the synthesized β-CDP.  相似文献   

2.
A novel poly(β-cyclodextrin)/bentonite composite (β-CD/BNC) was successfully prepared through graft polymerisation by using ammonium persulphate–sodium bisulphate as initiators, and characterized by FT-IR and EDS. The equilibrium data fit Freundlich isotherm satisfactorily. Adsorption kinetic was fitted with pseudo-second-order. The maximum adsorption capacities for Cs+ by β-CD/BNC in absence and presence of Na+ and Mg2+ were 48.83 ± 0.35, 47.30 ± 0.28, and 42.52 ± 0.85 mg g?1, respectively. Adsorption of Cs+ was suppressed by presence of Mg2+ more than Na+. β-CD/BNC had a higher affinity to Cs+ than Na+ and Mg2+. β-CD/BNC was an effective sorbent for the treatment cesium waste water.  相似文献   

3.
β-Cyclodextrin (β-CD) and its derivatives carboxymethyl-β-CD (CM-β-CD) and 2,6-dimethyl-β-CD (DM-β-CD) modified magnetic nanoparticles (CD-MNPs) were synthesized via layer-by-layer method. CDs grafted onto Fe3O4 MNPs were demonstrated by transmission electron microscopy, Fourier transform infrared and Zeta potential. Magnetic properties of CM-β-CD-MNPs, DM-β-CD-MNPs and β-CD-MNPs were characterized by vibrating sample magnetometer and the magnetic saturation values were 47, 46 and 44 emu g?1, respectively. CD-MNPs as drug carriers were investigated by inclusion behavior and in vitro release using ketoprofen (KP) as a model drug. The maximum adsorption quantities of CM-β-CD-MNPs, DM-β-CD-MNPs and β-CD-MNPs for KP were 37.03, 7.63 and 25.12 mg g?1, respectively, and the loading behaviors followed the Langmuir adsorption isotherm model with monolayer adsorption. The release profiles of KP released from KP-loaded CD-MNPs were rapid in initial 60 min and then gradually tend to level off, the release efficiency order was CM-β-CD-MNPs > β-CD-MNPs > DM-β-CD-MNPs, which was consistent with the order of inclusion capability. Therefore, the CD-MNPs were promising candidates for drug delivery.  相似文献   

4.
Hydroxyapatite (HAp) and hydroxyapatite/chitosan/β-cyclodextrin (HAp/CS/β-CD) nanoparticles were successfully prepared in the modified simulated body fluid (SBF) solution at the physiological conditions (pH 7.4, temperature?=?37 °C). CS/β-CD nanoparticles acted as templates for the synthesis of HAp/CS/β-CD nanoparticles to improve the nanoarchitecture of HAp and its crystallinity.The nanoparticles were characterized by FT-IR spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Kneading and coprecipitation methods were applied to prepare the inclusion complex involving β-CD and p-THPP (5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin), a photosensitizer for anti-cancer drugs. The 1:1 stoichiometric ratio of the formed inclusion complex was characterized by a formation constant of 7.216?×?102 mol?1 dm3 and analyzed by 1H NMR, FTIR, and UV–Vis. The p-THPP delivery release in vitro was in this order: HAp/CS/β-CD?<?CS/β-CD?<?<?HAp/β-CD?<?β-CD, hinting at a better controlled release by HAp/CS/β-CD nanoparticles.  相似文献   

5.
Inclusion complexes using α-, β-, γ-, and hydroxypropyl-β-CD (HP-β-CD) were produced with the antibiotic enrofloxacin, with the aim of increasing its solubility by complexation. Phase solubility diagrams were obtained, to confirm the formation of inclusion complexes, and to determine the solubility enhancement and stability constant of each complex. Enrofloxacin inclusion in β-CD showed the highest value of the complex stability constant (35.56?mmol?L?1), but the greatest increase in solubility was obtained using HP-β-CD reaching a 1258% increase over enrofloxacin solubility in the absence of CD. The order of highest enrofloxacin solubility achieved was: HP-β-CD?>?α-CD?>?γ-CD?>?β-CD. In addition, formation of complexes was confirmed by differential scanning calorimetry and thermogravimetry, applied to the complexes obtained by the kneading technique. The influence of citric acid, alone or as an adjunct of β-CD, on the solubility of enrofloxacin was also determined. A solution of 15?mmol?L?1 citric acid dissolved 10?g?L?1 of enrofloxacin, but a gradual increase in β-CD concentration in the presence of citric acid did not increase the degree of solubilization of enrofloxacin.  相似文献   

6.
In the paper, the two chemically modified β-cyclodextrin derivatives of 4,4´-diaminodiphenyl ether-bridged-bis-β-cyclodextrins (ODA-bis-β-CD) and p-aminobenzenesulfonic acid-β-cyclodextrin (ABS-β-CD) were synthesized, and then these two β-cyclodextrin derivatives were respectively formed into inclusion complexes with benzophenone (BP) by co-precipitation method. The structure of the inclusion complexes were characterized by UV/vis spectroscopy, FT-IR spectroscopy, elemental analysis, 1H NMR spectroscopy and XRD. Spectral titration was performed to study the inclusion behavior of the inclusion complexes. These experiments indicated that two inclusion complexes were formed at a stoichiometric ratio of 1:1 and the inclusion stability constants at different temperatures were calculated using the Benesi–Hildebrand (B–H) equation. The thermodynamic parameters (ΔG°, ΔH°, ΔS°) were obtained. As a result, it was found that the two chemically modified β-cyclodextrins containing BP were exothermic and spontaneous process (ΔG°?<?0), and the processes of inclusion complexation were mainly enthalpy driven with negative or minor negative entropic contribution.  相似文献   

7.
The adsorption of the uranyl ions from aqueous solutions on the nanoporous ZnO powders has been investigated under different experimental conditions. The adsorption of uranyl on nanoporous ZnO powders were examined as a function of the contact times, pH of the solution, concentration of uranium(VI) and temperature. The ability of this material to remove U(VI) from aqueous solution was followed by a series of Langmuir and Freunlinch adsorption isotherms. The adsorption percent and distribution coefficient for nanoporous ZnO powders were 98.65 % ± 1.05 and 7,304 mL g?1, respectively. The optimum conditions were found as at pH 5.0, contact time 1 h, at 1/5 Zn2+/urea ratio, 50 ppm U(VI) concentration and 303 K. The monomolecular adsorption capacity of nanoporous ZnO powders for U(VI) was found to be 1,111 mg g?1 at 303 K. Using the thermodynamic equilibrium constants obtained at different temperatures, various thermodynamic parameters, such as ΔG°, ΔH° and ΔS°, have been calculated. Thermodynamic parameters (ΔH° = 28.1 kJ mol ?1, ΔS° = 160.30 J mol?1 K?1, ΔG° = ?48.54 kJ mol?1) showed the endothermic and spontaneous of the process. The results suggested that nanoporous ZnO powders was suitable as sorbent material for recovery and adsorption of U(VI) ions from aqueous solutions.  相似文献   

8.
PVA functionalized with vinylphosphonic acid was prepared as a new adsorbent for uranyl (VI) adsorption from aqueous solutions. The vinylphosphonic acid was cografted onto PVA fibers by preirradiation grafting technique. The adsorbent were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The adsorbent was observed to possess a fibrous structure and was bonded with phosphonic acid groups successfully. The adsorbent was used for the adsorption of low levels uranyl (VI) ions from aqueous solutions. The influence of analytical parameters including pH, adsorption time, amount of adsorbent, metal ion concentration, and temperature were investigated on the recovery of uranyl (VI) ion in aqueous solution. The maximum adsorption capacity (32.1 mg g?1) and fast equilibrium time (30 min) were achieved at pH of 4.5 at room temperature. Thermodynamic parameters (ΔH° = 2.695 kJ mol?1; ΔS° = 31.15 J mol?1 K?1; ΔG° = ?6.748 kJ mol?1) show the adsorption of an exothermic process and spontaneous nature, respectively. The possible coordination mechanism was illustrated. Adsorption and desorption coexist in aqueous solutions and then the system becomes equilibrium.  相似文献   

9.
Electrical conductivity measurements were used to study the hydrolysis reaction of dilute aqueous solution of ethyl acetate with the presence β-cyclodextrin (β-CD) within a concentration range between 0.00 and 0.00750 M in basic medium at 25.0?°C. 0.00265 M of β-CD was chosen as typical concentration for studying the same reaction at different temperatures between 21.0 and 35.0?°C. Two different values of activation energy for the hydrolysis reaction of free ethyl acetate and ethyl acetate/β-CD complex were evaluated, and their values are 46.3 and 62.0 kJ mol?1 respectively. The standard Gibbs energy of activation (??Go), standard enthalpy of activation (??Ho), and standard entropy of activation (??So) for the two different cases were evaluated. β-CD plays a notable role in retarding the rate of hydrolysis of ethyl acetate in basic medium.  相似文献   

10.
Four nanoporous carbons obtained from different polymers: polypyrrole, polyvinylidene fluoride, sulfonated styrene–divinylbenzene resin, and phenol–formaldehyde resin, were investigated as potential adsorbents for carbon dioxide. CO2 adsorption isotherms measured at eight temperatures between 0 and 60 °C were used to study adsorption properties of these polymer-derived carbons, especially CO2 uptakes at ambient pressure and different temperatures, working capacity, and isosteric heat of adsorption. The specific surface areas and the volumes of micropores and ultramicropores estimated for these materials by using the density functional theory-based software for pore size analysis ranged from 840 to 1990 m2 g?1, from 0.22 to 1.47 cm3 g?1, and from 0.18 to 0.64 cm3 g?1, respectively. The observed differences in the nanoporosity of these carbons had a pronounced effect on the CO2 adsorption properties. The highest CO2 uptakes, 6.92 mmol g?1 (0 °C, 1 atm) and 1.89 mmol g?1 (60 °C, 1 atm), were obtained for the polypyrrole-derived activated carbon prepared through a single carbonization-KOH activation step. The working capacity for this adsorbent was estimated to be 3.70 mmol g?1. Depending on the adsorbent, the CO2 isosteric heats of adsorption varied from 32.9 to 16.3 kJ mol?1 in 0–2.5 mmol g?1 range. Overall, the carbons studied showed well-developed microporosity and exceptional CO2 adsorption, which make them viable candidates for CO2 capture, and for other adsorption and environmental-related applications.  相似文献   

11.
2‐Methacrylamidohistidine (MAH) as a pseudospecific ligand was synthesized from methacryl chloride and histidine. Spherical beads with an average size of 50–63 μm were obtained by the radical suspension polymerization of MAH and 2‐hydroxyethyl methacrylate (HEMA) conducted in an aqueous dispersion medium. Owing to the reasonably rough character of the bead surface, P(HEMA‐co‐MAH) beads had a specific surface area of 17.6 m2·g–1. Synthesized MAH was characterized by NMR. P(HEMA‐co‐MAH) beads were characterized by swelling studies, FT‐IR spectroscopy, scanning electron microscopy (SEM) and elemental analysis. P(HEMA‐co‐MAH) affinity beads with a swelling ratio of 65% were used in the separation of human immunoglobulin G (HIgG) from aqueous solutions and human plasma. The maximum HIgG adsorption on the P(HEMA‐co‐MAH) adsorbents was observed at pH 7.4 for phosphate and at pH 6.0 for morpholinoethanesulfonic acid buffers. The HIgG adsorption onto the PHEMA adsorbents was negligible. Higher adsorption values (up to 46.5 mg·g–1) were obtained when the P(HEMA‐co‐MAH) adsorbents were used in aqueous solutions. Much higher amounts of HIgG were adsorbed from human plasma (up to 73.8 mg·g–1). Adsorption capacities of other blood proteins were obtained as 3.2 mg·g–1 for fibrinogen and 4.6 mg·g–1 for albumin. The total protein adsorption was determined to be 82.2 mg·g–1. The pseudospecific affinity beads allowed one‐step separation of HIgG from human plasma. HIgG molecules could be repeatedly adsorbed and desorbed with these adsorbents without noticeable loss in their HIgG adsorption capacity.  相似文献   

12.
Present study describes the adsorption of carbofuran (CF) from aqueous solutions using p-tetranitrocalix[4]arene based modified silica through batch and column methods. Various parameters were optimized including initial pesticide concentrations (5 mg L?1), pH (2–10), contact time (60 min) and adsorbent dosage (30 mg). Modified silica was characterized by FT-IR and scanning electron microscope. The adsorption was further explained by Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models. Moreover, adsorption kinetics and adsorption thermodynamics were also investigated. Adsorption in dynamic mode was evaluated by breakthrough volumes and the Thomas model, applying batch conditions using 30 mg of modified silica at pH 5. It has been noticed that CF removal efficiency of modified silica was 98 % as compared to bare silica (48 %). Adsorption of CF on modified silica was found to be multilayer and physical in nature. Consequently, adsorption obeys pseudo-second-order kinetic equation following external mass transfer diffusion process as the rate-limiting step. Thermodynamic parameter (ΔG, ΔS, ΔH) values suggest that the adsorption of CF is spontaneous and exothermic in nature. Thomas model rate constant k TH (cm3 mg?1 min?1) and maximum solid phase concentration (q o mg g?1) was found to be 0.52 and 12.3, respectively, in dynamic mode.  相似文献   

13.
The host–guest interaction of tolmetin (TOL) with β-cyclodextrin (β-CD) and the influence of human serum albumin (HSA) on the formation of the inclusion complex were studied by 1D and 2D NMR spectroscopy. The TOL/β-CD inclusion complex formed at a molar ratio of 1:1 with a binding constant value of 2164.5 L·mol?1. Data analysis showed that the addition of 10 μmol·L?1 of HSA weakened the strength of TOL binding to β-CD (K a = 1493 L·mol?1). The interaction of TOL with HSA in the absence and presence of β-CD was studied by analyzing the fluorescence quenching data. The Stern–Volmer quenching constants and the binding constants are found to be smaller in the presence of β-CD, suggesting that β-CD hinders the strong interaction of TOL with HSA by complex formation. Additionally, the presence of β-CD does not induce conformational and microenvironmental changes on HSA.  相似文献   

14.
Abstract

In this study the effect of the dose and particle size of the adsorbent, initial dye concentration, initial pH, contact time and temperature were investigated for the removal of by means of fly ash (FA) methylene blue (MB) from an aqueous solution. The FA dose was found to be 2.0?g and the under 270 mesh sized particles were found to be effective particles for adsorption. The adsorption process reached its maximum value at 0.5?mg/L dye concentration and attained equilibrium within 10?minutes. The adsorption isotherm was found to follow the Langmuir model. The estimated adsorption free energy (ΔGo), enthalpy change (ΔHo), and entropy change (ΔSo) for the adsorption process were ?37.77?kJ mol?1, ?13.44?kJ mol?1 and 122 J mol?1 K?1 respectively at 298 K. The maximum adsorption capacity is 0,12?mg g?1 at 298 K and 0,07?mg g?1 at 398 K. The adsorption process was exothermic, feasible and spontaneous. The positive value of ΔSo shows the affinity of FA for MB while the low value of ΔGo suggests a physical adsorption process.  相似文献   

15.
In this work, the molecularly imprinted polymers (MIPs) and non-imprinted polymers (NIPs) for clopyralid (3,6-DCP) were successfully synthesized via precipitation polymerization using methacrylic acid (MAA) as functional monomer, ethylene glycol dimethacrylate (EGDMA) as crosslinker and a mixture of butanone (MEK) and n-heptane as porogen under the existence of azobisisobutyronitrile (AIBN). The morphologies, particle sizes, structures, adsorption properties and selective recognitions of polymers were investigated systematically. The average particle sizes of MIP3 and NIP3 were 2.76 μm and 2.15 μm. The apparent maximum binding amount (Qmax) of MIP3 and NIP3 were 67.50 mg·g?1 and 65.02 mg·g?1 in Scatchard analysis. Langmuir isotherm displayed that the Langmuir constant (Kl) of MIP3 and NIP3 were 0.015 L·mg?1 and 0.0065 L·mg?1, the saturation adsorption capacity (Qmax) of MIP3 and NIP3 were 63.23 mg·g?1 and 58.17 mg·g?1. Lagergren pseudo-second-order kinetic plot described that the adsorption process of MIP3 was visualized as chemical absorption. Selectivity analysis revealed that MIP3 possessed highly specific recognition for 3,6-DCP.  相似文献   

16.
In this work, β-CD-based polyurethane copolymers (β-CDPU) have been prepared by reacting β-CD with hexamethylene diisocyanate as cross-linked agent in dry DMF. This polymer showed high selectivity for preconcentration of Pb(II) at trace level prior to its flame atomic absorption spectrometric determination. The effect of several parameters such as pH, flow rate of sample, eluent kind and volume was investigated. The adsorption behaviors and mechanisms of Pb(II) on the samples were also studied. The maximum adsorption amount of Pb(II) was 8 mg g?1 with the preconcentration factor of 250 for Pb(II). The Langmuir isotherm was proved to describe the adsorption data better than the Freundlich isotherm and a pseudo-first-order kinetic model fits the adsorption kinetic processes well. The calibration curve was linear in the range of (3–200 ng mL?1) with a correlation coefficient of 0.9996. The limit of detection based on three times the standard deviation of the blank was 1.15 ng mL?1. The relative standard deviations for the determination of 10 and 100 ng mL?1 of Pb(II) were 3.60 and 0.43 % (n = 10), respectively. The method was successfully applied to the determination of lead in some environmental samples such as Tehran and Bushehr drinking water, river water and dust samples.  相似文献   

17.
A novel magnetic nanoadsorbent was prepared by the covalent binding of carboxymethyl chitosan (CMC) onto the surface of Fe3O4 magnetic nanoparticles, which was developed using a coprecipitating method. This nanoadsorbent was characterized by transmission electron microscopy (TEM) and X-ray diffraction patterns (XRD), etc. Moreover, the adsorption performance of the nanoadsorbent toward Zn2+ ions was investigated. The results showed that the mean diameter of the magnetic nanoadsorbent was 18 nm and the amount of CMC was about 5%. The nanoadsorbent showed high efficiency for the removal of Zn2+ ions. The adsorption rate was so rapid that the equilibrium was achieved within 2 min. The isotherm adsorption data obeyed the Langmuir model, with a maximum adsorption capacity of 20.4 mg·g?1 and an adsorption equilibrium constant of 0.0314 L·mg?1. The thermodynamic calculations indicated that the adsorption process was exothermic and that the enthalpy change was ?5.68 kJ·mol?1.  相似文献   

18.
Pyrolysis of rice straw (RS), a popular method for producing biochar, effectively treats heavy metal(loid)-contaminated RS. Here, we carried out this process at different temperatures and investigated the deportment of heavy metal(loid)s and the property evolution of biochars. Also, the optimal pyrolysis temperature for Pb adsorption and immobilization was studied. We observed that increasing the temperature could volatilize the heavy metal(loid)s. Cd was the most volatile metal therein, followed by As, while Ni, Cu, and Pb were relatively refractory. More than 75% of the remaining heavy metal(loid)s were non-exchangeable fractions at 700 °C, significantly reducing the environmental risk during subsequent application. Meanwhile, higher pyrolysis temperature resulted in higher pH values, higher surface areas, and stronger Pb adsorption capacity of RS biochars. The maximum adsorption capacity (Qm) of biochars was in the order of BC300 (77.2 mg·g?1) < BC500 (137.2 mg·g?1) < BC700 (222.6 mg·g?1). Besides, high-temperature biochar could significantly reduce the vertical Pb migration. And BC700 increased the fraction of residual Pb from 39.7% to 44.0% in the soil under the acid rain leaching condition. Therefore, we propose that the heavy metal(loid)-contaminated RS biochar produced at 700 °C might be more suitable for the remediation of soil heavily polluted in the Pb-smelting area.  相似文献   

19.
Granular and monolith carbon materials were prepared from African palm shell by chemical activation with H3PO4, ZnCl2 and CaCl2 aqueous solutions of different concentrations. Adsorption capacity of carbon dioxide and methane were measured at 298 K and 4,500 kPa, and also of CO2 at 273 K and 100 kPa, in a volumetric adsorption equipment. Correlations between the textural properties of the materials and the adsorption capacity for both gases were obtained from the experimental data. The results obtained show that the adsorption capacity of CO2 and CH4 increases with surface area, total pore volume and micropore volume of the activated carbons. Maximum adsorption values were: 5.77 mmol CO2 g?1 at 273 K and 100 kPa, and 17.44 mmol CO2 g?1 and 7.61 mmol CH4 g?1 both at 298 K and 4,500 kPa.  相似文献   

20.
Phenol and its derivatives are considered as dangerous pollutants due to these harmful effects on health and the environment. Treatment of the waters charged by these compounds by adsorption remains very important. For these reasons, this study was designed to prepare nickel oxide by precipitation method in order to remove these pollutants from aquatic environments. Indeed, structural and textural properties of this solid have been determined by various physicochemical methods (X-ray diffraction, Fourier transform in the infrared, N2 adsorption/desorption (BET), ATD / ATG thermal analysis and scanning electron microscopy (SEM)). In addition, several adsorption tests were carried out in order to show the effectiveness of this solid for the elimination of phenol in aqueous solution and to determine the physicochemical parameters which affect adsorption. Our results have shown 5.29 mg·g−1 of adsorption capacity with 98% of yield. Furthermore, it was shown that adsorption process was endothermic. For the kinetic study, it was demonstrated that phenol adsorption on NiO follows the pseudo-second-order and the Langmuir model better adaptable for the isotherm of desorption. Moreover, thermodynamic study shows positive values of ΔS ° (266.6 JK−1·mol−1) suggesting a randomness increase of the solid/liquid interface. ΔH ° (60.41 kJ·mol−1) was also positive confirming the endothermic nature of the adsorption processes. However, ΔG ° (kJ·mol−1) was negative suggesting the spontaneity of the phenol adsorption. In summary, this work suggests that phenol adsorption on NiO was linked to the chemical adsorbate/adsorbent interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号