首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, a novel method is described for the determination of bromhexine in biological fluids using molecularly imprinted solid-phase extraction as the sample cleanup technique combined with high performance liquid chromatography (HPLC). The water-compatible molecularly imprinted polymers (MIPs) were prepared using methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linker, chloroform as porogen and bromhexine as the template molecule. The novel imprinted polymer was used as a solid-phase extraction sorbent for the extraction of bromhexine from human serum and urine. Various parameters affecting the extraction efficiency of the polymer have been evaluated. The optimal conditions for molecularly imprinted solid-phase extraction (MISPE) consisted of conditioning 1 mL methanol and 1 mL of deionized water at neutral pH, loading of 5 mL of the water sample (25 μg L−1) at pH 6.0, washing using 2 mL acetonitrile/acetone (1/4, v/v) and elution with 3× 1 mL methanol/acetic acid (10/1, v/v). The MIP selectivity was evaluated by checking several substances with similar molecular structures to that of bromhexine. Results from the HPLC analyses showed that the calibration curve of bromhexine using MIP from human serum and urine is linear in the ranges of 0.5-100 and 1.5-100 μg L−1 with good precisions (3.3% and 2.8% for 5.0 μg L−1), respectively. The recoveries for serum and urine samples were higher than 92%.  相似文献   

2.
通过优化实验条件,选择洗脱温度80℃、加热时间5min、萃取压力10.4MPa、洗脱溶剂为300mL的甲醇/乙酸(90∶10,V/V),静态萃取时间8min、吹扫时间100s,对1.000g尼古丁印迹聚合物中的模板分子进行连续6次的萃取洗脱,洗脱效率达94.2%,模板渗漏量仅为9.8μg/L,萃取时间<70min。将2000mg洗脱后的印迹聚合物颗粒装填于3mL的聚丙烯固相萃取小柱中,用10mL甲醇/乙酸(90∶1,V/V)淋洗小柱,用高效液相色谱检测淋洗液中的尼古丁,获得模板的渗漏量为9.8μg/L。  相似文献   

3.
Tianhe Jiang  Baolin Chu  Wei Yan 《Talanta》2009,78(2):442-447
A molecularly imprinted polymer (MIP) has been synthesized by a thermo-polymerization method using methacrylic acid (MAA) as functional monomer, ethylene glycol dimethacrylate (EGDMA) as cross-linker, acetonitrile as porogenic solvent, and 17β-estradiol as template. The MIP showed obvious affinity for 17β-estradiol in acetonitrile solution, which was confirmed by absorption experiments. After optimization of molecularly imprinted solid-phase extraction (MISPE) conditions, three structurally related estrogenic compounds (17β-estradiol, estriol, and diethylstilbestrol) were used to evaluate the selectivity of the MIP cartridges. The MIP cartridges exhibited highly selectivity for E2, the recoveries were 84.8 ± 6.53% for MIPs and 19.1 ± 1.93% for non-imprinted polymer (NIP) cartridges. The detection and quantification limits correspond to 0.023 and 0.076 mg L−1. Furthermore, the MISPE methods were used to selectively extract E2 from fish and prawn tissue prior to HPLC analysis. This MISPE-HPLC procedure could eliminate all matrix interference simultaneously and had good recoveries (78.3-84.5%).  相似文献   

4.
A simple, sensitive, and selective molecularly imprinted solid‐phase extraction and spectrophotometric method has been developed for the clean‐up and preconcentration of indapamide from human urine. Molecularly imprinted polymers were prepared by a non‐covalent imprinting approach using indapamide as a template molecule, 2‐(trifluoromethyl) acrylic acid as a functional monomer, ethylene glycol dimethacrylate as a crosslinker, N,N‐azobisisobutyronitrile as a thermal initiator and acetonitrile as a porogenic solvent. A non‐imprinted polymer was also prepared in the same way, but in the absence of template. Molecularly imprinted polymer and non‐imprinted polymer sorbents were dry‐packed into solid‐phase extraction cartridges. Eluates from cartridges were analyzed using a spectrophotometer for the determination of indapamide by referring to the calibration curve in the range 0.14–1.50 μg/mL. Preconcentration factor, limit of detection, and limit of quantification were 16.30, 0.025 μg/mL, and 0.075 μg/mL, respectively. A relatively high imprinting factor (9.3) was also achieved and recovery values for the indapamide spiked into human urine were in the range of 80.1–81.2%. In addition, relatively low within‐day (0.17–0.42%) and between‐day (1.1–1.4%) precision values were obtained as well. The proposed molecularly imprinted solid‐phase extraction and spectrophotometric method was successfully applied to selective extraction, preconcentration, and determination of indapamide from human urine samples.  相似文献   

5.
Determination of an individual's aggregate dietary ingestion of pesticides entails analysis of a difficult sample matrix. Permethrin-specific molecularly imprinted polymer (MIP) solid-phase extraction cartridges were developed for use as a sample preparation technique for a composite food matrix. Vortexing with acetonitrile and centrifugation were found to provide optimal extraction of the permethrin isomers from the composite foods. The acetonitrile (with 1% acetic acid) was mostly evaporated and the analytes reconstituted in 90:10 water/acetonitrile in preparation for molecularly imprinted solid-phase extraction. Permethrin elution was accomplished with acetonitrile and sample extracts were analyzed by isotope dilution gas chromatography–ion trap mass spectrometry. Quantitation of product ions provided definitive identification of the pesticide isomers. The final method parameters were tested with fortified composite food samples of varying fat content (1%, 5%, and 10%) and recoveries ranged from 99.3% to 126%. Vegetable samples with incurred pesticide levels were also analyzed with the given method and recoveries were acceptable (81.0–95.7%). Method detection limits were demonstrated in the low ppb range. Finally, the applicability of the MIP stationary phase to extract other pyrethroids, specifically cyfluthrin and cypermethrin, was also investigated.  相似文献   

6.
《Analytical letters》2012,45(14):2235-2252
A simple method based on matrix solid-phase dispersion for selective extraction of anthraquinones from rhubarb samples was developed using a molecularly imprinted polymer as sorbent. The molecularly imprinted polymer was prepared using emodin as the template molecule, methacrylic acid as the functional monomer, and ethylene glycol dimethacrylate as the cross-linking agent. The polymer was characterized by scanning electron microscopy and Fourier-transform infrared spectrometry. Isothermal adsorption and dynamic adsorption experiments were performed. The best extraction conditions for anthraquinones were obtained at a ratio of molecularly imprinted polymer to sample of 1:1, a dispersion time of 5 minutes, with 5% aqueous methanol as the washing solvent, and an elution solvent of methanol-acetic acid (99:1, v/v). Once the matrix solid-phase dispersion process was optimized, the extract was reacted with 8% hydrochloric acid for hydrolysis. The anthraquinones extracted from rhubarb were determined by liquid chromatography. The detection limits of chrysophanol, emodin, physcion, and aloe-emodin were 0.23, 0.24, 0.28, and 0.27 µg mL?1, respectively. The proposed method was compared with the method in Chinese pharmacopoeia, and the results show that the extraction yield of anthraquinones obtained by molecularly imprinted polymer–matrix solid-phase dispersion method was higher. Moreover, the proposed method is faster and simpler and can achieve extraction and purification in the same system.  相似文献   

7.
Bulk and precipitation polymerization methods were used to prepare ibuprofen-molecularly imprinted polymers. Molecularly imprinted polymer-bulk and -precipitation were synthesized in acetonitrile, likewise molecularly imprinted polymer-bulk (mixture) and molecularly imprinted polymer-precipitation (mixture) in a mixture of acetonitrile/toluene (75:25 v/v). N2 adsorption-desorption analysis data revealed that molecularly imprinted polymer-precipitation (mixture) has the highest specific surface area (200.74 m2/g). The surface chemistry and morphology of the synthesized sorbents were investigated by Fourier-transform infrared analysis and scanning electron microscope micrographs respectively. The prepared sorbents in the mixture of solvents were used in a dispersive solid-phase extraction process for selective extraction and pre-concentration of ibuprofen from urine and human plasma samples. The detection limits were 62.91 and 7.89 ng/ml using molecularly imprinted polymer-bulk (mixture) and molecularly imprinted polymer-precipitation (mixture), respectively. Also, the sorbents showed selective behavior to extract ibuprofen in the presence of naproxen, fenoprofen, and ketoprofen. Overall, the results showed that the precipitation method in the mixture of acetonitrile/toluene resulted in the preparation of a sorbent with the highest extraction efficiency. Furthermore, a pharmacokinetic study was done. The maximum plasma concentration, the time required for maximum plasma concentration, and plasma half-life were 28.95 μg/ml, 2, and 2.39 h, respectively.  相似文献   

8.
In this paper, a highly selective molecularly imprinted polymer (MIP) for tramadol hydrochloride, a drug used to treat moderate to severe pain, was prepared and its use as solid-phase extraction (SPE) sorbent was demonstrated. The molecularly imprinted solid-phase extraction procedure followed by high performance liquid chromatography with ultraviolet detector (MISPE-HPLC) was developed for selective extraction and determination of tramadol in human plasma and urine. The optimal conditions for molecularly imprinted solid-phase extraction (MISPE) consisted of conditioning with 1 mL methanol and 1 mL of deionized water at neutral pH, loading of tramadol sample (50 μg L−1) at pH 7.5, washing using 1 mL acetone and elution with 3 × 1 mL of 10% (v/v) acetic acid in methanol. The MIP selectivity was evaluated by checking several substances with similar molecular structures to that of tramadol. Results from the HPLC analyses showed that the calibration curve of tramadol (using MIP from human plasma and urine) is linear in the ranges of 6–100 and 3–120 μg L−1 with good precisions (1.9% and 2.9% for 5.0 μg L−1), respectively. The recoveries for plasma and urine samples were higher than 81%.   相似文献   

9.
Molecular imprints selective for a homologous series of local anaesthetics, including bupivacaine, ropivacaine and mepivacaine, were prepared and the resultant polymers were used for solid-phase extraction of human plasma. The template was a structural analogue, pentycaine, which was imprinted in methacrylic acid-ethylene glycol dimethacrylate copolymers. Equilibrium ligand binding experiments using radiolabelled bupivacaine were performed to characterize the imprinted polymers, as well as to identify optimal conditions for selective extraction of plasma samples. Dilution of the plasma prior to extraction with citrate buffer pH 5.0 containing ethanol and Tween 20 was found optimal for selective imprint-analyte binding, and for reduction of non-specific adsorption of lipophilic contaminants to the hydrophobic MIP surface. Wash steps using 20% methanol in water followed by a solvent switch to 10% ethanol in acetonitrile removed contaminants and strengthened the selective imprint-analyte binding. Elution under basic conditions using triethylamine-water-acetonitrile mixtures recovered bupivacaine in 89% yield with superior selectivity over elution under acidic conditions. The final protocol extracted trace levels of ropivacaine and bupivacaine from human plasma and allowed determination of bupivacaine in the range of 3.9-500 nmol L−1 and ropivacaine in the range of 7.8-500 nmol L−1 with inter-assay accuracies of 94-99 and 95-104%, respectively. This present investigation provides an improved understanding of approaches available for optimization of protocols for molecular-imprint based solid-phase extraction of plasma samples.  相似文献   

10.
Andersson LI 《The Analyst》2000,125(9):1515-1517
The ability to use imprinted polymers for solid-phase extraction is demonstrated in a model pre-concentration of bupivacaine from human plasma samples prior to gas chromatography. Imprinting of the structural analogue pentycaine yielded a sorbent which efficiently extracted analyte and internal standard, while possible interference on analyte quantification from leakage of remaining template molecules was eliminated. Human plasma samples were diluted with citrate buffer pH 5, and applied onto solid phase extraction columns containing 15 mg of imprinted sorbent. Wash steps with 20% methanol in water followed by acetonitrile preceded elution with 2% triethylamine in acetonitrile. A direct comparison with conventional sample pre-treatment methods showed the high selectivity of the imprinted sorbent resulted in distinctly cleaner chromatographic traces than were obtained both after liquid-liquid extraction and C18-based solid-phase extraction.  相似文献   

11.
A new molecularly imprinted polymer, prepared following a non-covalent approach, was synthesised using enrofloxacin as a template molecule. The imprinting effect of the polymer was verified by chromatographic evaluation and, interestingly, this evaluation also revealed that the imprinted polymer showed a high degree of cross-reactivity for ciprofloxacin, the major metabolite of enrofloxacin. The molecularly imprinted polymer was then applied as a selective sorbent in a two-step solid-phase extraction method focussing upon complex biological matrices, specifically human urine and pig liver. This two-step solid-phase extraction protocol, in which a commercial Oasis HLB cartridge and a molecularly imprinted solid-phase extraction cartridge were combined, allowed enrofloxacin and ciprofloxacin to be determined by liquid chromatography coupled to a UV detector at levels below the maximum residue limits established by the European Union. The quantification and detection limits in tissue samples of enrofloxacin and ciprofloxacin were established at 50 μg kg−1 and 30 μg kg−1, respectively.  相似文献   

12.
Diphenyl phosphate is a hydrolysis product and possible metabolite of the flame retardant and plasticiser additive triphenyl phosphate. A molecularly imprinted polymer solid-phase extraction (MISPE) method for extracting diphenyl phosphate from aqueous solutions has been developed and compared with SPE using a commercially available mixed-mode anion exchanger. The imprinted polymer was prepared using 2-vinylpyridine (2-Vpy) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, and a structural analogue of the analyte as the template molecule. The imprinted polymer was evaluated for use as a SPE sorbent, in tests with both aqueous standards and spiked urine samples, by comparing recovery and breakthrough data obtained using the imprinted form of the polymer and a non-imprinted form (NIP). Extraction from aqueous solutions resulted in more than 80% recovery. Adsorption by the molecularly imprinted polymer (MIP) was non-selective , but selectivity was achieved by selective desorption in the wash steps. Diphenyl phosphate could also be selectively extracted from urine samples, although the urine matrix reduced the capacity of the MISPE cartridges. Recoveries from urine extraction were higher than 70%. It was important to control pH during sample loading. The MISPE method was found to yield a less complex LC–ESI–MS chromatogram of the urine extracts compared with the mixed-mode anion-exchanger method. An LC–ESI–MS method using a Hypercarb LC column with a graphitised carbon stationary phase was also evaluated for organophosphate diesters. LC–ESI–MS using negative-ion detection in selected ion monitoring (SIM) mode was shown to be linear for diphenyl phosphate in the range 0.08–20 ng L–1.  相似文献   

13.
A rapid and specific reversed-phase high performance liquid chromatography (RP-HPLC) method for the determination of palmatine in rabbit plasma has been developed and validated. The chromatographic separation was performed on a C18 column at 40 °C. The mobile phase, delivered at 1.0 mL min?1, consisted of acetonitrile/phosphate buffer (pH 3.0) 40:60 (v/v). The detection wavelength was set at 345 nm. Palmatine and internal standard (IS) berberine were extracted from plasma by solid-phase extraction using C18 cartridges. Linearity was confirmed in the concentration range of 0.01 to 5 μg mL?1, the inter-day and intra-day RSDs were within 10.0, the recoveries of palmatine ranged from 93.1 to 110.3, and the limit of detection (LOD, S/N > 3) was 0.002 μg mL?1. The method is applicable to the determination of palmatine in rabbit plasma after intravenous administration of palmatine.  相似文献   

14.
《Comptes Rendus Chimie》2017,20(5):585-591
Ketoprofen is a nonsteroidal anti-inflammatory drug widely consumed by humans as it possesses analgesic activities. A selective molecularly imprinted polymer (MIP) for ketoprofen was synthesized and applied as a solid-phase extraction sorbent. MIP was synthesized using 2-vinylpyridine, ethylene glycol dimethacrylate, 1,1′-azobis(cyclohexanecarbonitrile), toluene/acetonitrile (9:1, v/v), and ketoprofen as a functional monomer, cross-linker, initiator, porogenic mixture, and template, respectively. The polymerization was performed at 60 °C for 16 h, and thereafter the temperature was increased to 80 °C for 24 h to achieve a solid monolith polymer. Nonimprinted polymer was synthesized in a similar manner with the omission of ketoprofen. Characterization with thermogravimetric analysis and X-ray diffraction showed that the synthesized polymers were thermally stable and amorphous. Solid-phase extraction cartridges packed with MIP were used with high-performance liquid chromatography for quantitative analysis of ketoprofen in wastewater. The analytical method gave detection limits of 0.23, 0.17, and 0.09 μg/L in wastewater influent, effluent, and deionized water, respectively. The recovery for the wastewater influent and effluent spiked with 5 μg/L of ketoprofen was 68%, whereas 114% was obtained for deionized water. The concentrations of ketoprofen in the influent and effluent samples were in the ranges of 22.5–34.0 and 1.14–5.33 μg/L, respectively. Overall, the analytical method for the analysis of ketoprofen in wastewater was rapid, affordable, accurate, precise, sensitive, and selective.  相似文献   

15.
In this work, a novel magnetic nanomaterial functionalized with a molecularly imprinted polymer was prepared for the extraction of protoberberine alkaloids. Molecularly imprinted polymers were made on the surface of Fe3O4 nanoparticles by using berberine as template, acetonitrile/water as porogen, acrylamide as functional monomer and ethylene glycol dimethacrylate as cross‐linker. The optimized molar ratio of template/functional monomer was 1:7. The polymeric magnetic nanoparticles were characterized by transmission electron microscopy and Fourier transform infrared spectroscopy. The stability and adsorption capacity of the molecularly imprinted polymers were investigated. The molecularly imprinted polymers were used as a selective sorbent for the magnetic molecularly imprinted solid‐phase extraction and determination of jatrorrhizine, palmatine, and berberine. Extraction parameters were studied including loading pH, sample volume, stirring speed, and extraction time. Finally, a magnetic molecularly imprinted solid‐phase extraction coupled to high‐performance liquid chromatography method was developed. Under the optimized conditions, the method showed good linear range of 0.1–150 ng/mL for berberine and 0.1–100 ng/mL for jatrorrhizine and palmatine. The limit of detection was 0.01 ng/mL for berberine and 0.02 ng/mL for jatrorrhizine and palmatine. The proposed method has been applied to determine protoberberine alkaloids in Cortex phellodendri and rat plasma samples. The recoveries ranged from 87.33–102.43%, with relative standard deviation less than 4.54% in Cortex phellodendri and from 102.22–111.15% with relative standard deviation less than 4.59% in plasma.  相似文献   

16.
Molecularly imprinted polymers (MIPs) were prepared using bisphenol A (BPA) as a template by precipitation polymerization. The polymer that had the highest binding selectivity and ability was used as solid-phase extraction (SPE) sorbents for direct extraction of BPA from different biological and environmental samples (human serum, pig urine, tap water and shrimp). The extraction protocol was optimized and the optimum conditions were as follows: conditioning with 5 mL methanol–acetic acid (3:1), 5 mL methanol, 5 mL acetonitrile and 5 mL water, respectively, loading with 5 mL aqueous samples, washing with 1 mL acetonitrile, and eluting with 3 mL methanol. MIPs can selectively recognize, effectively trap and preconcentrate BPA over a concentration range of 2–20 μM. Recoveries ranged from 94.03 to 105.3 %, with a relative standard deviation lower than 7.9 %. Under the optimal condition, molecularly imprinted SPE recoveries of spiked human serum, pig urine, tap water and shrimp were 65.80, 82.32, 76.00 and 75.97 %, respectively, when aqueous samples were applied directly. Compared with C18 SPE, a better baseline, better high-performance liquid chromatography separation efficiency and higher recoveries were achieved after molecularly imprinted SPE.   相似文献   

17.
A novel molecularly imprinted polymer based on graphene oxide was prepared as a solid‐phase extraction adsorbent for the selective adsorption and extraction of cyromazine from seawater samples. The obtained graphene oxide molecularly imprinted polymer and non‐imprinted polymer were nanoparticles and characterized by scanning electron microscopy. The imprinted polymer showed higher adsorption capacity and better selectivity than non‐imprinted polymer, and the maximum adsorption capacity was 14.5 mg/g. The optimal washing and elution solvents for molecularly imprinted solid phase extraction procedure were 2 mL of acetonitrile/water (80:20, v/v) and methanol/acetic acid (70:30, v/v), respectively. The recoveries of cyromazine in the spiked seawater samples were in the range of 90.3–104.1%, and the relative standard deviation was <5% (n = 3) under the optimal procedure and detection conditions. The limit of detection of the proposed method was 0.7 μg/L, and the limit of quantitation was 2.3 μg/L. Moreover, the imprinted polymer could keep high adsorption capacity for cyromazine after being reused six times at least. Finally, the synthesized graphene oxide molecularly imprinted polymer was successfully used as a satisfied sorbent for high selectivity separation and detection of cyromazine from seawater coupled with high‐performance liquid chromatography.  相似文献   

18.
A organically modified molecularly imprinted silica (MIS), selective for methylxanthines, was prepared using a simple sol-gel procedure. Caffeine was used as template; 3-aminopropyltrimethoxysilane (APTMS) as functional monomer and tetraethyl orthosilicate (TEOS) as reticulating agent. The material was packed on solid-phase extraction (SPE) cartridges and evaluated with aqueous test samples, natural water and human urine; a quantitative method for methylxanthines in water, using SPE cartridges packed with the MIS coupled with HPLC-UV was developed. The MIS was highly specific for methylxanthines, with an imprinting factor of (20.5+/-1.9). The analytical method resulted in detection limits of 85 microgL(-1) for theobromine, 44 microgL(-1) for theophylline and 53 microgL(-1) for caffeine.  相似文献   

19.

We are presenting magnetic molecularly imprinted polymer nanoparticles (m-MIPs) for solid-phase extraction and sample clean-up of paracetamol. The m-MIPs were prepared from magnetite (Fe3O4) as the magnetic component, paracetamol as the template, methacrylic acid as a functional monomer, and 2-(methacrylamido) ethyl methacrylate as a cross-linker. The m-MIPs were then characterized by transmission electron microscopy, FT-IR spectroscopy, X-ray diffraction and vibrating sample magnetometry. The m-MIPs were applied to the extraction of paracetamol from human blood plasma samples. Following its elution from the column loaded with the m-MIPs with an acetonitrile-buffer (9:1) mixture, it was submitted to HPLC analysis. Paracetamol can be quantified by this method in the 1 μg L−1 to 300 μg L−1 concentration range. The limit of detection and limit of quantification in plasma samples are 0.17 and 0.4 μg L−1. The preconcentration factor of the m-MIPs is 40. The HPLC method shows good precision (4.5 % at 50 μg L−1 levels) and recoveries (between 83 and 91 %) from spiked plasma samples.

We are presenting magnetic molecularly imprinted polymer nanoparticles (m-MIPs) for solid-phase extraction and sample clean-up of paracetamol. The m-MIPs were applied to the extraction of paracetamol from human blood plasma samples

  相似文献   

20.
安定分子印迹聚合物的制备及应用   总被引:1,自引:1,他引:0  
以安定为模板分子,通过本体聚合和沉淀聚合的方法合成了分子印迹聚合物材料,考察了交联剂、致孔剂及温度等条件对聚合物材料性能的影响。电镜扫描图片显示本体聚合得到的聚合物呈不规则形状,而沉淀聚合得到的则是微球颗粒,形状规则。吸附实验表明,聚合物微球对安定的最大吸附量约为130μg/g,对奥沙西泮和硝西泮的吸附量约为110μg/g,对安定类化合物具有较高的吸附性能和选择性。通过对比合成现象和聚合物性能,最终选用以DVB为交联剂、乙腈为致孔剂合成的聚合物微球为固相萃取材料填充固相萃取小柱,从饲料及猪尿样品中选择性地分离、富集痕量安定类药物。结合高效液相色谱法检测,奥沙西泮、硝西泮和安定3种药物在0.1~20 mg/L范围内线性良好,相关系数为0.999 6~0.999 9,检出限(S/N=3)为0.03~0.08 mg/L,加标回收率为66%~79%。该方法为安定类药物的检测提供了一种新途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号