首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The binary classical nucleation theory (BCNT) is based on the Gibbsian thermodynamics and applies the macroscopic concept of surface tension to nanosize clusters. This leads to severe inconsistencies and large discrepancies between theoretical predictions and experimental results regarding the nucleation rate. We present an alternative approach to the kinetics of binary nucleation which avoids the use of classical thermodynamics for clusters. The new approach is an extension to binary mixtures of the kinetic theory previously developed by Narsimhan and Ruckenstein and Ruckenstein and Nowakowski [J. Colloid Interface Sci. 128, 549 (1989); 137, 583 (1990)] for unary nucleation which is based on molecular interactions and in which the rate of emission of molecules from a cluster is determined via a mean first passage time analysis. This time is calculated by solving the single-molecule master equation for the probability distribution of a "surface" molecule moving in a potential field created by the cluster. The starting master equation is a Fokker-Planck equation for the probability distribution of a surface molecule with respect to its phase coordinates. Owing to the hierarchy of characteristic time scales in the evolution of the molecule, this equation can be reduced to the Smoluchowski equation for the distribution function involving only the spatial coordinates. The new theory is combined with density functional theory methods to determine the density profiles. This is essential for nucleation in binary systems particularly when one of the components is surface active. Knowing these profiles, one can determine the potential fields created by the cluster, its rate of emission of molecules, and the nucleation rate more accurately than by using the uniform density approximation. The new theory is illustrated by numerical calculations for a model binary mixture of Lennard-Jones monomers and rigidly bonded dimers of Lennard-Jones atoms. The amphiphilic character of the dimer component (i.e., its surface activity) is induced by the asymmetry in the interaction between a monomer and the two different sites of a dimer. The inconsistencies of the BCNT are avoided in the new theory.  相似文献   

2.
We consider the nucleation process associated with capillary condensation of a vapor in a hydrophobic cylindrical pore (capillary evaporation). The liquid-vapor transition is described within the framework of a simple lattice model. The phase properties are characterized both at the mean-field level and with Monte Carlo simulations. The nucleation process for the liquid to vapor transition is then specifically considered. Using umbrella sampling techniques, we show that nucleation occurs through the condensation of an asymmetric vapor bubble at the pore surface. Even for highly confined systems, good agreement is found with macroscopic considerations based on classical nucleation theory. The results are discussed in the context of recent experimental work on the extrusion of water in hydrophobic pores.  相似文献   

3.
A model for isothermal homogeneous nucleation is proposed that improves the classical model. A quasiequilibrium distribution of clusters was calculated on a basis of the Frenkel’-Lothe-Pound theory. The dependence of the free energy of clusters on their size was represented by an interpolation formula relating the free energy of dimers and large clusters to which a notion of macroscopic surface tension is applicable. The nucleation rate and the dependence of the cluster temperature on their size were calculated by balance equations describing the heating of from a cluster due to the condensation of monomers and its cooling due to collisions with an ambient gas. It is shown that the nucleation rate in excess buffer gas is higher than for the pure condensing gas by approximately two orders of magnitude. The model adequately describes the experimental data for the nucleation of methanol supersaturated vapor.  相似文献   

4.
An attempt is made to critically analyze the modern state of the theory of homogeneous nucleation as concerns its ability to describe experiments with high accuracy. An analysis of the experimental data led us to conclude that the dependence of the nucleation rate on supersaturation and temperature T was not described by the theory, which underestimates the critical cluster size compared with the Gibbs-Thomson equation. The possibility of applying density functional theory (one of the latest achievements in the theory of homogeneous nucleation) was questioned. Within this theory, the Gibbs-Thomson equation remains valid even outside the classic capillary approximation. It is suggested that, to bring theory in consistency with experiment, certain fundamental propositions of the theory of nucleation should be revised. The inclusion of an additional contribution to the Gibbs energy of a cluster caused by the size dependence of the specific heat capacity of the cluster decreases the critical cluster size compared with the value calculated by the Gibbs-Thomson equation. The calculated dependence of nucleation rate on supersaturation was in agreement with the experimental results.  相似文献   

5.
6.
The homogeneous nucleation rates for n-nonane-n-propanol vapor mixtures have been calculated as a function of vapor-phase activities at 230 K using the classical nucleation theory (CNT) with both rigorous and approximate kinetic prefactors and compared to previously reported experimental data. The predicted nucleation rates resemble qualitatively the experimental results for low n-nonane gas phase activity. On the high nonane activity side the theoretical nucleation rates are about three orders of magnitude lower than the experimental data when using the CNT with the approximate kinetics. The accurate kinetics improves the situation by reducing the difference between theory and experiments to two orders of magnitude. Besides the nucleation rate comparison and the experimental and predicted onset activities, the critical cluster composition is presented. The total number of molecules is approximated by CNT with reasonable accuracy. Overall, the classical nucleation theory with rigorous kinetic prefactor seems to perform better. The thermodynamic parameters needed to calculate the nucleation rates are revised extensively. Up-to-date estimates of liquid phase activities using universal functional activity coefficient Dortmund method are presented together with the experimental values of surface tensions obtained in the present study.  相似文献   

7.
In this paper we develop a new theory to evaluate the nucleation rate in the framework of the EMLD-DNT model. Beyond the model, our theory deals with cluster translation and exclusion, effects that have been virtually ignored in classical nucleation theory. We apply the model to the case of 1-pentanol, and compare the predictions with experimental results. We find an excellent agreement between the nucleation rate predicted by our theory and experimental data. The distinguishing feature of the model is its ability to predict successfully the rate of formation of the critical nucleus without the use of an intermolecular potential, employing only macroscopic thermodynamic properties.  相似文献   

8.
We report a computer-simulation study of the free-energy barrier for the nucleation of pores in the bilayer membrane under constant stretching lateral pressure. We find that incipient pores are hydrophobic but as the lateral size of the pore nucleus becomes comparable with the molecular length, the pore becomes hydrophilic. In agreement with previous investigations, we find that the dynamical process of growth and closure of hydrophilic pores is controlled by the competition between the surface tension of the membrane and the line tension associated with the rim of the pore. We estimate the line tension of a hydrophilic pore from the shape of the computed free-energy barriers. The line tension thus computed is in a good agreement with available experimental data. We also estimate the line tension of hydrophobic pores at both macroscopic and microscopic levels. The comparison of line tensions at these two different levels indicates that the "microscopic" line tension should be carefully distinguished from the "macroscopic" effective line tension used in the theoretical analysis of pore nucleation. The overall shape of the free-energy barrier for pore nucleation shows no indication for the existence of a metastable intermediate during pore nucleation.  相似文献   

9.
We present an overview of the current status of experimental, theoretical, molecular dynamics (MD), and density functional theory (DFT) studies of argon vapor-to-liquid nucleation. Since the experimental temperature-supersaturation domain does not overlap with the corresponding MD and DFT domains, separate comparisons have been made: theory versus experiment and theory versus MD and DFT. Three general theoretical models are discussed: Classical nucleation theory (CNT), mean-field kinetic nucleation theory (MKNT), and extended modified liquid drop model-dynamical nucleation theory (EMLD-DNT). The comparisons are carried out for the area below the MKNT pseudospinodal line. The agreement for the nucleation rate between the nonclassical models and the MD simulations is very good--within 1-2 orders of magnitude--while the CNT deviates from simulations by about 3-5 orders of magnitude. Perfect agreement is demonstrated between DFT results and predictions of MKNT (within one order of magnitude), whereas CNT and EMLD-DNT show approximately the same deviation of about 3-5 orders of magnitude. At the same time the agreement between all theoretical models and experiment remains poor--4-8 orders of magnitude for MKNT, 12-14 orders for EMLD-DNT, and up to 26 orders for CNT. We discuss possible reasons for this discrepancy and the ways to carry out experiment and simulations within the common temperature-supersaturation domain in order to produce a unified picture of argon nucleation.  相似文献   

10.
The dielectric model proposed by Liebsch is solved for Ag clusters within time dependent density functional theory. The distribution of oscillator strength is analyzed and departures from the behaviour of simple (alkali) clusters are stressed. Comparison with experimental results of isolated Ag N + clusters is made. The observed blueshift as the size of the cluster decreases is explained by a reduction of the s-d screening interaction in the surface region. As a microscopic justification of the model, the response of the Ag+ core is calculated using the embedded atom approximation.  相似文献   

11.
We show that the binary homogeneous nucleation (BHN) of H2SO4-H2O can be treated as quasi-unary nucleation of H2SO4 in equilibrium with H2O vapor. A scheme to calculate the evaporation coefficient of H2SO4 molecules from H2SO4-H2O clusters is presented and a kinetic model to simulate the quasi-unary nucleation of H2SO4-H2O is developed. In the kinetic model, the growth and evaporation of sulfuric acid clusters of various sizes are explicitly simulated. The kinetic quasi-unary nucleation model does not have two well-recognized problems associated with the classical BHN theory (violation of the mass action law and mismatch of the cluster distribution for monomers) and is appropriate for the situations where the assumption of equilibrium cluster distribution is invalid. The nucleation rates predicted with our quasi-unary kinetic model are consistent with recent experimental nucleation experiments in all the cases studied, while the most recent version of the classical BHN model systematically overpredicts the nucleation rates. The hydration of sulfuric acid clusters, which is not considered in the classical model but is accounted for implicitly in our kinetic quasi-unary model, is likely to be one of physical mechanisms that lead to lower nucleation rates. Further investigation is needed to understand exactly what cause the difference between the kinetic quasi-unary model and the classical BHN model.  相似文献   

12.
A review of recent progress in the kinetics of nucleation is presented. In the conventional approach to the kinetic theory of nucleation, it is necessary to know the free energy of formation of a new-phase particle as a function of its independent variables at least for near-critical particles. Thus the conventional kinetic theory of nucleation is based on the thermodynamics of the process. The thermodynamics of nucleation can be examined by using various approaches, such as the capillarity approximation, density functional theory, and molecular simulation, each of which has its own advantages and drawbacks. Relatively recently a new approach to the kinetics of nucleation was proposed [Ruckenstein E, Nowakowski B. J Colloid Interface Sci 1990;137:583; Nowakowski B, Ruckenstein E. J Chem Phys 1991;94:8487], which is based on molecular interactions and does not employ the traditional thermodynamics, thus avoiding such a controversial notion as the surface tension of tiny clusters involved in nucleation. In the new kinetic theory the rate of emission of molecules by a new-phase particle is determined with the help of a mean first passage time analysis. This time is calculated by solving the single-molecule master equation for the probability distribution function of a surface layer molecule moving in a potential field created by the rest of the cluster. The new theory was developed for both liquid-to-solid and vapor-to-liquid phase transitions. In the former case the single-molecule master equation is the Fokker-Planck equation in the phase space which can be reduced to the Smoluchowski equation owing to the hierarchy of characteristic time scales. In the latter case, the starting master equation is a Fokker-Planck equation for the probability distribution function of a surface layer molecule with respect to both its energy and phase coordinates. Unlike the case of liquid-to-solid nucleation, this Fokker-Planck equation cannot be reduced to the Smoluchowski equation, but the hierarchy of time scales does allow one to reduce it to the Fokker-Plank equation in the energy space. The new theory provides an equation for the critical radius of a new-phase particle which in the limit of large clusters (low supersaturations) yields the Kelvin equation and hence an expression for the macroscopic surface tension. The theory was illustrated with numerical calculations for a molecular pair interaction potential combining the dispersive attraction with the hard-sphere repulsion. The results for the liquid-to-solid nucleation clearly show that at given supersaturation the nucleation rate depends on the cluster structure (for three cluster structures considered-amorphous, fcc, and icosahedral). For both the liquid-to-solid and vapor-to-liquid nucleation, the predictions of the theory are consistent with the results of classical nucleation theory (CNT) in the limit of large critical clusters (low supersaturations). For small critical clusters the new theory provides higher nucleation rates than CNT. This can be accounted for by the fact that CNT uses the macroscopic interfacial tension which presumably overpredicts the surface tension of small clusters, and hence underpredicts nucleation rates.  相似文献   

13.
We present homogeneous vapor-liquid nucleation rates of the 1-alcohols (C(n)H(2n+1)OH, n = 2-4) measured in the well-established two-valve nucleation pulse chamber as well as in a novel one-piston nucleation pulse chamber at temperatures between 235 and 265 K. The nucleation rates and critical cluster sizes show a very systematic behavior with respect to the hydrocarbon chain length of the alcohol, just as their thermo-physical parameters such as surface tension, vapor pressure, and density would suggest. For all alcohols, except ethanol, predictions of classical nucleation theory lie several orders of magnitude below the experimental results and show a strong temperature-dependence typically found in nucleation experiments. The more recent Reguera-Reiss theory [J. Phys. Chem. B 108(51), 19831 (2004)] achieves reasonably good predictions for 1-propanol, 1-butanol, and 1-pentanol, and independent of the temperature. Ethanol, however, clearly shows the influence of strong association between molecules even in the vapor phase. We also scaled all experimental results with classic nucleation theory to compare our data with other data from the literature. We find the same overall temperature trend for all measurement series together but inverted and inconsistent temperature trends for individual 1-propanol and 1-butanol measurements in other devices. Overall, our data establishe a comprehensive and reliable data set that forms an ideal basis for comparison with nucleation theory.  相似文献   

14.
The thermodynamics of surface-stimulated crystal nucleation demonstrates that if at least one of the facets of the crystal is only partially wettable by its melt, then it is thermodynamically more favorable for the nucleus to form with that facet at the droplet surface rather than within the droplet. So far, however, the kinetic aspects of this phenomenon had not been studied at all. In the present paper, a kinetic theory of homogenous crystal nucleation in unary droplets is proposed by taking into account that a crystal nucleus can form not only in the volume-based mode (with all its facets within the droplet) but also in the surface-stimulated one (with one of its facets at the droplet surface). The theory advocates that even in the surface-stimulated mode crystal nuclei initially emerge (as subcritical clusters) homogeneously in the subsurface layer, not "pseudo-heterogeneously" at the surface. A homogeneously emerged subcritical crystal can become a surface-stimulated nucleus due to density and structure fluctuations. This effect contributes to the total rate of crystal nucleation (as the volume-based mode does). An explicit expression for the total per-particle rate of crystal nucleation is derived. Numerical evaluations for water droplets suggest that the surface-stimulated mode can significantly enhance the per-particle rate of crystal nucleation in droplets as large as 10 microm in radius. Possible experimental verification of the proposed theory is discussed.  相似文献   

15.
The formation and kinetics of large vapourized-material cluster beams (large size metal clusters) are discussed. The clusters are formed by injecting the vapour of solid state materials into a high vacuum region through a nozzle of a heated crucible. The conditions under which metal clusters form are analysed using nucleation theory. Computer simulation by combining the nucleation and flow equations has also been made. The results show that the theory can be useful in predicting qualitative dependences of metal cluster formation on operation conditions. Several experimental results are also presented, which support the finding that a large size metal cluster is formed by homogeneous nucleation and growth. The advantageous characteristics of ionized cluster beam for thin film formation are also discussed.  相似文献   

16.
We have calculated the critical cluster sizes and homogeneous nucleation rates of water at temperatures and vapor densities corresponding to experiments by Wolk and Strey [J. Phys. Chem B 105, 11683 (2001)]. The calculations have been done with an expanded version of a Monte Carlo method originally developed by Vehkamaki and Ford [J. Chem. Phys. 112, 4193 (2000)]. Their method calculates the statistical growth and decay probabilities of molecular clusters. We have derived a connection between these probabilities and kinetic condensation and evaporation rates, and introduce a new way for the calculation of the work of formation of clusters. Three different interaction potential models of water have been used in the simulations. These include the unpolarizable SPC/E [J. Phys. Chem. 91, 6269 (1987)] and TIP4P [J. Chem. Phys. 79, 926 (1983)] models and a polarizable model by Guillot and Guissani [J. Chem. Phys. 114, 6720 (2001)]. We show that TIP4P produces critical cluster sizes and a temperature and vapor density dependence for the nucleation rate that agree well with the experimental data, although the magnitude of nucleation rate is constantly overestimated by a factor of 2 x 10(4). Guissani and Guillot's model is somewhat less successful, but both the TIP4P and Guillot and Guissani models are able to reproduce a much better experimental temperature dependency of the nucleation rate than the classical nucleation theory. Using SPC/E results in dramatically too small critical clusters and high nucleation rates. The water models give different average binding energies for clusters. We show that stronger binding between cluster molecules suppresses the decay probability of a cluster, while the growth probability is not affected. This explains the differences in results from different water models.  相似文献   

17.
18.
We have measured homogeneous nucleation rates of water at 200-240 K in the carrier gas helium, in the range of 10(13) - 10(17) m(-3) s(-1) using an expansion wave tube. The rates agree well with the results of Wolk and Strey [J. Phys. Chem. B 105, 11683 (2001)] in the range of overlap (220-240 K), and are summarized by the empirical fit J = S exp[4.6 + 0.244T-(906.8 - 2.914T)(ln S)(2)], with J the nucleation rate in m(-3) s(-1), S the supersaturation, and T the temperature in K. We find that the supersaturation dependence of both our rates and those of Wolk and Strey is lower than classical theory predicts, and that the critical cluster is smaller than the classical critical size. These deviations are explained in the framework of the Tolman theory for surface tension, and the "Tolman length" is estimated from our experimental results. We find a positive Tolman length that increases with decreasing temperature, from about 0.1 Angstrom at 260 K to (0.6 +/- 0.4) Angstroms at 200 K. We present a nucleation rate expression that takes the Tolman length into account and show that both the supersaturation and temperature dependence are improved, compared to the classical theory.  相似文献   

19.
Homogeneous nucleation and growth of zinc from supersaturated vapor are investigated by nonequilibrium molecular dynamics simulations in the temperature range from 400 to 800 K and for a supersaturation ranging from log S=2 to 11. Argon is added to the vapor phase as carrier gas to remove the latent heat from the forming zinc clusters. A new parametrization of the embedded atom method for zinc is employed for the interaction potential model. The simulation data are analyzed with respect to the nucleation rates and the critical cluster sizes by two different methods, namely, the threshold method of Yasuoka and Matsumoto [J. Chem. Phys. 109, 8451 (1998)] and the mean first passage time method for nucleation by Wedekind et al. [J. Chem. Phys. 126, 134103 (2007)]. The nucleation rates obtained by these methods differ approximately by one order of magnitude. Classical nucleation theory fails to describe the simulation data as well as the experimental data. The size of the critical cluster obtained by the mean first passage time method is significantly larger than that obtained from the nucleation theorem.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号