首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Neutrinos with magnetic moment experience chirality flips while scattering off charged particles. It is known that if neutrino is a Dirac fermion, then such chirality flips lead to the production of sterile right-handed neutrinos inside the core of a star during the stellar collapse, which may facilitate the supernova explosion and modify the supernova neutrino signal. In the present paper we reexamine the production of right-handed neutrinos during the collapse using a dynamical model of the collapse. We refine the estimates of the values of the Dirac magnetic moment which are necessary to substantially alter the supernova dynamics and neutrno signal. It is argued in particular that Super-Kamiokande will be sensitive at least to μ ν Dirac = 10−13μB in case of a galactic supernova explosion. Also we briefly discuss the case of Majorana neutrino magnetic moment. It is pointed out that in the inner supernova core spin flips may quickly equilibrate electron neutrinos with nonelectron antineutrinos if μ ν Majorana ≳ 10−12μB. This may lead to various consequences for supernova physics.  相似文献   

2.
The double conversion of neutrino chirality νL → νR → νL has been analyzed for supernova conditions, where the first stage is due to the interaction of the neutrino magnetic moment with plasma electrons and protons in the supernova core, and the second stage, due to the resonance spin flip of the neutrino in the magnetic field of the supernova envelope. It is shown that, in the presence of the neutrino magnetic moment in the range 10?13 μB < μν < 10?12 μB and a magnetic field of ~1013 G between the neutrinosphere and the shock-stagnation region, an additional energy of about 1051 erg, which is sufficient for a supernova explosion, can be injected into this region during a typical shock-stagnation time.  相似文献   

3.
We study type II supernova signatures of neutrino mass generation via symmetry breaking at a scale in the range from keV to MeV. The scalar responsible for symmetry breaking is thermalized in the supernova core and restores the symmetry. The neutrinos from scalar decays have about half the average energy of thermal neutrinos. The Bose-Einstein distribution of the scalars can be established with a megaton water Cerenkov detector. The discovery of the bimodal neutrino flux is, however, well within the reach of the Super-Kamiokande detector, without a detailed knowledge of the supernova parameters.  相似文献   

4.
We study magnetic dipole moments of right-handed neutrinos in a keV neutrino dark matter model. This model is a simple extension of the standard model with only right-handed neutrinos and a pair of charged particles added. One of the right-handed neutrinos is the candidate of dark matter with a keV mass. Some bounds on the dark matter magnetic dipole moment and model parameters are obtained from cosmological observations.  相似文献   

5.
In this paper,we first discuss the detection of supernova neutrinos on earth.Then we propose a possible method to acquire information about θ13 smaller than 1.5° by detecting the ratio of the event numbers of different flavor supernova neutrinos.Such an sensitivity cannot yet be achieved by the Daya Bay reactor neutrino experiment.  相似文献   

6.
A brief review for particle physicists on the cosmological impact of neutrinos and on restrictions on neutrino properties from cosmology is given. The paper includes a discussion of upper bounds on neutrino mass and possible ways to relax them, methods to observe the cosmic-neutrino background, bounds on the cosmological lepton asymmetry which are strongly improved by neutrino oscillations, cosmological effects of breaking of the spin-statistics theorem for neutrinos, bounds on mixing parameters of active and possible sterile neutrinos with account of active-neutrino oscillations, bounds on right-handed currents and neutrino magnetic moments, and some more. The text was submitted by the authors in English.  相似文献   

7.
The China Jinping Underground Laboratory(CJPL), which has the lowest cosmic-ray muon flux and the lowest reactor neutrino flux of any laboratory, is ideal to carry out low-energy neutrino experiments. With two detectors and a total fiducial mass of 2000 tons for solar neutrino physics(equivalently, 3000 tons for geo-neutrino and supernova neutrino physics), the Jinping neutrino experiment will have the potential to identify the neutrinos from the CNO fusion cycles of the Sun, to cover the transition phase for the solar neutrino oscillation from vacuum to matter mixing, and to measure the geo-neutrino flux, including the Th/U ratio. These goals can be fulfilled with mature existing techniques. Efforts on increasing the target mass with multi-modular neutrino detectors and on developing the slow liquid scintillator will increase the Jinping discovery potential in the study of solar neutrinos,geo-neutrinos, supernova neutrinos, and dark matter.  相似文献   

8.
9.
A solution of the solar neutrino problem based on certain differences between T(opological) G(eometro) D(ynamics) and the standard model of the electroweak interactions is proposed. First, TGD predicts the existence of a right-handed neutrino inert with respect to ordinary electroweak interactions. Second, the generalization of the massless Dirac equation contains terms mixing differentM 4 chiralities, unlike the ordinary massless Dirac equation. This and the observation of anticorrelations of the solar neutrino flux with sunspot number suggest that solar neutrinos are transformed to right-handed neutrinos on the convective zone of the Sun. Third, the compactness ofCP 2 implies topological field quantization: space-time decomposes into regions, topological field quanta, characterized by a handful of vacuum quantum numbers. In particular, there are topological obstructions for the smooth global imbeddings of magnetic fields and the decomposition of the solar magnetic field into flux tubes is predicted. Finally, every electromagnetically neutral mass distribution is accompanied by a long-rangeZ 0 vacuum field. If the vacuum quantum numbers inside the flux tubes of the solar magnetic field are considerably smaller than in the normal phase, theZ 0 electric force becomes strong and implies Thomas precession for the spin of the lefthanded component of the neutrino. As a consequence, left-handed neutrinos are transformed to right-handed ones and the process is irreversible, since righthanded neutrinos do not couple toZ 0.  相似文献   

10.
We calculate coherent neutrino and antineutrino flavor transformation in the supernova environment, for the first time including self-consistent coupling of intersecting neutrino and antineutrino trajectories. For neutrino mass-squared difference /deltam2/ = 3 x 10(-3) eV2 we find that in the normal (inverted) mass hierarchy the more tangentially-propagating (radially-propagating) neutrinos and antineutrinos can initiate collective, simultaneous medium-enhanced flavor conversion of these particles across broad ranges of energy and propagation direction. Accompanying alterations in neutrino and antineutrino energy spectra and fluxes could affect supernova nucleosynthesis and the expected neutrino signal.  相似文献   

11.
In the context of a minimal extension of the Standard Model with three extra heavy right-handed neutrinos, we propose a model for neutrino masses and mixing based on the hipothesis of a complete alignment of the lepton mass matrices in flavour space. Considering a uniform quasi-democratic structure for these matrices, we show that, in the presence of a highly hierarchical right-handed neutrino mass spectrum, the effective neutrino mass matrix, obtained through the seesaw mechanism, can reproduce all the solutions of the solar neutrino problem.  相似文献   

12.
贾俊基  王耀光  周顺 《中国物理C(英文版)》2019,43(9):095102-095102-15
In this paper, we investigate whether it is possible to determine the neutrino mass hierarchy via a high-statistics and real-time observation of supernova neutrinos with short-time characteristics. The essential idea is to utilize distinct times-of-flight for different neutrino mass eigenstates from a core-collapse supernova to the Earth, which may significantly change the time distribution of neutrino events in the future huge water-Cherenkov and liquid-scintillator detectors. For illustration, we consider two different scenarios. The first case is the neutronization burst of emitted in the first tens of milliseconds of a core-collapse supernova, while the second case is the black hole formation during the accretion phase for which neutrino signals are expected to be abruptly terminated. In the latter scenario, it turns out only when the supernova is at a distance of a few Mpc and the fiducial mass of the detector is at the level of gigaton, might we be able to discriminate between normal and inverted neutrino mass hierarchies. In the former scenario, the probability for such a discrimination is even less due to a poor statistics.  相似文献   

13.
The ν L ν R ν L double conversion of the Dirac neutrino helicity is analyzed under supernova conditions, in which case the first stage is due to the interaction of the neutrino magnetic moment with plasma electrons and protons in the supernova core, while the second stage is caused by a resonance neutrino-spin flip in the magnetic field of the supernova envelope. It is shown that, if the neutrino has a magnetic moment in the range 10?13 µB < µ ν < 10?12 µB and if a magnetic field of strength 1013 G exists between the neutrinosphere and the region of shock-wave stagnation, an additional energy on the order of 1051 erg, which is sufficient for stimulating a damped attenuated shock wave, can be injected in this region within the stagnation time.  相似文献   

14.
The resonant transition effects MSW and NSFP for three flavour Majorana neutrinos in a supernova are considered, where the transition magnetic moments are likely to play a relevant role in neutrino physics. In this scenario, the deformed thermal neutrino distributions are obtained for different choices of the electron-tau mixing angle. Detailed predictions for the future large neutrino detectors are also given in terms of the ratio between the spectra of recoil electrons for deformed and undeformed spectra.  相似文献   

15.
The atomic ionization processes induced by scattering of neutrinos play key roles in the experimental searches for a neutrino magnetic moment. Current experiments with reactor (anti)neutrinos employ germanium detectors having energy threshold comparable to typical binding energies of atomic electrons, which fact must be taken into account in the interpretation of the data. Our theoretical analysis shows that the so-called stepping approximation to the neutrino-impact ionization is well applicable for the lowest bound Coulomb states, and it becomes exact in the semiclassical limit. Numerical evidence is presented using the Thomas-Fermi model for the germanium atom.  相似文献   

16.
In this paper we study dynamical CPT-violation in the neutrino sector as induced by the dark energy of the universe. Specifically we consider a dark energy model where the dark energy scalar derivatively interacts with the right-handed neutrinos. This type of derivative coupling leads to cosmological CPT-violation during the evolution of the background field of the dark energy. We calculate the induced CPT-violation of left-handed neutrinos and find that the CPT-violation produced in this way is consistent with the present experimental limit and sensitive to future neutrino oscillation experiments such as the neutrino factory. PACS 95.36.+x; 14.60.St  相似文献   

17.
Theories involving extra dimensions, a low (TeV) string scale and bulk singlet neutrinos will produce an effective neutrino magnetic moment which may be large (10−11μB). The effective magnetic moment increases with neutrino energy, and therefore high energy reactions are most useful for limiting the allowed number of extra dimensions. We examine constraints from both neutrino-electron scattering and also astrophysical environments. We find that supernova energy loss considerations require a number of extra dimensions, n≥2, for an electron neutrino-bulk neutrino Yukawa coupling of order 1.  相似文献   

18.
Srubabati Goswami 《Pramana》2000,54(1):173-184
In this article I review the constraints on neutrino mass and mixing coming from type-II supernovae. The bounds obtained on these parameters from shock reheating, r-process nucleosynthesis and from SN1987A are discussed. Given the current constraints on neutrino mass and mixing the effect of oscillations of neutrinos from a nearby supernova explosion in future detectors will also be discussed.  相似文献   

19.
The neutrino flux close to a supernova core contributes substantially to neutrino refraction so that flavor oscillations become a nonlinear phenomenon. One unexpected consequence is efficient flavor transformation for antineutrinos in a region where only neutrinos encounter a Mikheyev-Smirnov-Wolfenstein resonance or vice versa. Contrary to previous studies we find that in the neutrino-driven wind the electron fraction Y(e) always stays below 0.5, corresponding to a neutron-rich environment as required by r-process nucleosynthesis. The relevant range of masses and mixing angles includes the region indicated by LSND, but not the atmospheric or solar oscillation parameters.  相似文献   

20.
Marc Dixmier 《Pramana》1994,43(6):453-465
We suggest a new answer to the problem of the solar neutrinos: a neutrino-photon interaction that would cause the neutrinos to disappear before they leave the sun or make them lose energy towards detection thresholds. We calculate the available energy in the system of the centre of mass, and show that the photons may be endowed with a pseudo-cross-section in the system of the sun. Under the assumption of an absorption, made to simplify the neutrino transport calculation, the chlorine experiment yields:σ a =1.8( −1.0 +0.7 )*10−9 barn, which is close tog β/(ℏc)=4·49*10−9 barn. The escape probability is substantially larger for the gallium neutrinos than for the chlorine neutrinos. Thermal radiation in the core of a supernova is suppressed by electrical conductivity, therefore the neutrinos from SN1987A could escape; they interacted with the photon piston in the outer layers of the supernova and the interaction has to be a scattering. The cosmological implications of a neutrino-photon interaction are discussed; Hubble’s constant may have to be modified. The case of an elastic scattering between neutrino and photon is discussed in more detail. An erratum to this article is available at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号