首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Triple quadrupole mass spectrometers are generally considered the instrument of choice for quantitative analysis. However, for the analysis of large peptides we have encountered some cases where, as the data presented here would indicate, ion trap mass spectrometers may be a good alternative. In general, specificity and sensitivity in bioanalytical liquid chromatography/mass spectrometry (LC/MS) assays are achieved via tandem MS (MS/MS) utilizing collision-induced dissociation (CID) while monitoring unique precursor to product ion transitions (i.e. selected reaction monitoring, SRM). Due to the difference in CID processes, triple quadrupoles and ion traps often generate significantly different fragmentation spectra of product ion species and intensities. The large peptidic analytes investigated here generated fewer fragments with higher relative abundance on the ion trap as compared to those generated on the triple quadrupole, resulting in lower limits of detection on the ion trap.  相似文献   

2.
Product ion spectra produced by collision-induced dissociation (CID) in tandem mass spectrometry can yield important structural information on organic compounds which can aid in their identification. However, differences in experimental conditions may have a strong effect on the degree of product ion formation and therefore on the features observed in product ion spectra. For this reason, a common approach for library building is the acquisition of several spectra, typically between 5 and 10, each at a different collision energy level. In this study, the use of an alternative approach was investigated, where a tuning point protocol was applied to tune the instruments in an attempt to standardise CID conditions prior to data acquisition. With this approach, the acquisition of a single mass spectrum was sufficient. The stability of the tuning point was investigated and the choice of a commercially available search package to assess spectral comparability was discussed. Finally, the product ion spectra of 33 compounds were acquired on twelve tandem-in-space instruments, including nine triple quadrupoles, one hybrid triple quadrupole linear ion trap and two quadrupole time-of-flight mass spectrometers, resulting in 2178 spectral comparisons being carried out. The results from the spectral comparisons suggest that the use of a tuning point enables the standardisation of the experimental conditions that affect the degree of product ion formation. Indeed, 84.5% of the comparisons demonstrated a good degree of spectral agreement with match scores greater than 700, which we believe is the minimum score for a tentative library match.  相似文献   

3.
Glycopeptides derived from ribonuclease B and ovomucoid have been subjected to collision-induced dissociation (CID) in the second quadrupole of a triple quadrupole mass spectrometer. Doubly charged parent ions gave predictable fragmentation that yielded partial sequence information of the attached oligosaccharide as Hex and HexNAc units. Common oxonium ions are observed in the product ion mass spectra of the glycopeptides that correspond to HexNAc+ (m/z 204) and HexHexNAc+ (m/z 366). A strategy for locating the glycopeptides in the proteolytic digest mixtures of glycoproteins by ions spray liquid chromatography mass spectrometry (LC/MS) is described by utilizing CID in the declustering region of the atmospheric pressure ionization mass spectrometer to produce these characteristic oxonium ions. This LC/CID/MS approach is used to identify glycopeptides in proteolytic digest mixtures of ovomucoid, asialofetuin, and fetuin. LC/CID/MS in the selected ion monitoring mode may be used to identify putative glycopeptides from the proteolytic digest of fetuin.  相似文献   

4.
Reproducibility of product ion spectra acquired using a liquid chromatography/triple-quadrupole mass spectrometry (LC/MS/MS) instrument over a 4-year period, and with three other LC/MS/MS instruments, one from the same manufacturer and two from a different manufacturer, was examined. The MS/MS spectra of 30 drug substances were generated in positive electrospray ionization mode at low, medium, and high collision energies (20, 35, and 50 eV). Purity and Fit score percentages against a 400-compound LC/MS/MS spectral library were calculated using an algorithm in which fragment intensity ratios and weighting factors were included. The long-term reproducibility study was conducted using a brand A instrument; after 4 years the reproducibility of the product ion spectra was still 94%, expressed as average Purity score. The inter-laboratory study involved two parts. Firstly, two LC/MS/MS spectral libraries, created independently in separate laboratories using brand A instruments, were compared with each other. The average Fit and Purity scores of spectra from one library against the other were better than 93 and 91%, respectively, when the same collision energies were used. Secondly, for the comparison of product ion spectra between brand A and brand B instruments, fragmentation conditions were first standardized for amitriptyline as the standard analyte. The average Fit scores of brand B spectra against the brand A spectral library varied between 79 and 85% at all three collision energies. These results indicate that, after standardizing the instrumental conditions, LC/MS/MS spectral libraries of drug substances are suitable for inter-laboratory use.  相似文献   

5.
A library of negative ion electrospray ionization mass spectra and tandem mass spectra (MS/MS) of sulfonated dyes has been developed for fast identification purposes. The uniform protocol has been elaborated and applied to the measurements of more than 50 anionic dyes. Three collision energies are selected in our protocol which ensures that at least one of them provides a suitable ratio of product ions to the precursor ion. The robustness is investigated with altered values of tuning parameters (e.g. the pressure of the nebulizing gas, the temperature and the flow rate of drying gas, and the mobile phase composition). The results of the inter-laboratory comparison of product ion mass spectra recorded on seven different tandem mass spectrometers (three ion traps, two triple quadrupoles and two hybrid quadrupole time of flight instruments) are presented for four representative anionic dyes--azo dye Acid Red 118, anthraquinone dye Acid Violet 43, triphenylmethane dye Acid Blue 1 and Al(III) metal-complex azo dye. The fragmentation patterns are almost identical for all tandem mass analyzers, only the ratios of product ions differ somewhat which confirms the possibility of spectra transfer among different mass analyzers with the goal of library formation.  相似文献   

6.
Collision induced dissociation (CID) in a quadrupole ion trap mass spectrometer using the conventional 30 ms activation time is compared with high amplitude short time excitation (HASTE) CID using 2 ms and 1 ms activation times. As a result of the shorter activation times, dissociation of the parent ions using the HASTE CID technique requires resonance excitation voltages greater than conventional CID. After activation, the rf trapping voltage is lowered to allow product ions below the low mass cut-off to be trapped. The HASTE CID spectra are notably different from those obtained using conventional CID and can include product ions below the low mass cut-off for the parent ions of interest. The MS/MS efficiencies of HASTE CID are not significantly different when compared with the conventional 30 ms CID. Similar results were obtained with a two-dimensional (linear) ion trap and a three-dimensional ion trap.  相似文献   

7.
Recently, we demonstrated a new method, STEP (Statistical Test of Equivalent Pathways) analysis, which differentiates first-generation product ions (primary product ions) from second-generation product ions (secondary product ions) obtained in tandem mass spectrometric (MS/MS) experiments on a quadrupole ion trap mass spectrometer. The study presented here defines how to adapt the STEP method to a more routinely used mass analyzer, the triple quadrupole. New ion activation conditions were developed to adapt the STEP method to the triple quadrupole mass spectrometer using peptides and carbohydrates. The application of this method to the triple quadrupole is useful because it provides an efficient approach to differentiate primary and secondary ions on this instrument. Out of the total number of ions that were subjected to the STEP analysis, this method correctly identified 96% of ions as primary or secondary, indicating that this analysis is effective for carbohydrates and peptides undergoing collision-induced dissociation (CID) on a triple quadrupole mass spectrometer.  相似文献   

8.
The use of a Q-q-Q(linear ion trap) instrument to obtain product ion spectra is described. The instrument is based on the ion path of a triple quadrupole mass spectrometer with Q3 operable as either a conventional RF/DC quadrupole mass filter or a linear ion trap mass spectrometer with axial ion ejection. This unique ion optical arrangement allows de-coupling of precursor ion isolation and fragmentation from the ion trap itself. The result is a high sensitivity tandem mass spectrometer with triple quadrupole fragmentation patterns and no inherent low mass cut-off. The use of the entrance RF-only section of the instrument as accumulation ion trap while the linear ion trap mass spectrometer is scanning enhances duty cycles and results in increased sensitivities by as much as a factor of 20. The instrument is also capable of all of the triple quadrupole scans including multiple-reaction monitoring (MRM) as well as precursor and constant neutral loss scanning. The high product ion scanning sensitivity allows the recording of useful product ion spectra near the MRM limit of quantitation.  相似文献   

9.
The application of a new hybrid RF/DC quadrupole-linear ion trap mass spectrometer to support drug metabolism and pharmacokinetic studies is described. The instrument is based on a quadrupole ion path and is capable of conventional tandem mass spectrometry (MS/MS) as well as several high-sensitivity ion trap MS scans using the final quadrupole as a linear ion trap. Several pharmaceutical compounds, including trocade, remikiren and tolcapone, were used to evaluate the capabilities of the system with positive and negative turbo ionspray, using either information-dependent data acquisition (IDA) or targeted analysis for the screening, identification and quantification of metabolites. Owing to the MS/MS in-space configuration, quadrupole-like CID spectra with ion trap sensitivity can be obtained without the classical low mass cutoff of 3D ion traps. The system also has MS(3) capability which allows fragmentation cascades to be followed. The combination of constant neutral loss or precursor ion scan with the enhanced product ion scan was found to be very selective for identifying metabolites at the picogram level in very complex matrices. Owing to the very high cycle time and, depending on the mass range, up to eight different MS experiments could be performed simultaneously without compromising chromatographic performance. Targeted product ion analysis was found to be complementary to IDA, in particular for very low concentrations. Comparable sensitivity was found in enhanced product ion scan and selected reaction monitoring modes. The instrument is particularly suitable for both qualitative and quantitative analysis.  相似文献   

10.
Optimisation of the activation parameters for ion trap mass spectrometric analysis of the chlormequat cation using simplex optimisation enabled the product ion (m/z 58) response to be improved 1000-fold. A comparison of the sensitivity of the optimised ion trap mass spectrometer with that of a triple quadrupole mass spectrometer for liquid chromatography/tandem mass spectrometry (LC/MS/MS) showed that similar limits of detection (LODs) could be achieved. For the MS/MS transition of the (35)Cl precursor to the most abundant product, LODs were 0.8 ng cation mL(-1) (0.004 mg cation kg(-1) pear equivalent) and 1.0 ng cation mL(-1) (0.005 mg cation kg(-1) pear equivalent) on the triple quadrupole and ion trap instrument, respectively.  相似文献   

11.
The purpose of the study was to determine the advantages of different mass spectrometric instruments and commercially available metabolite identification programs for metabolite profiling. Metabolism of tramadol hydrochloride and the excretion of it and its metabolites into human urine were used as a test case because the metabolism of tramadol is extensive and well known. Accurate mass measurements were carried out with a quadrupole time-of-flight mass spectrometer (Q-TOF) equipped with a LockSpray dual-electrospray ionization source. A triple quadrupole mass spectrometer (QqQ) was applied for full scan, product ion scan, precursor ion scan and neutral loss scan measurements and an ion trap instrument for full scan and product ion measurements. The performance of two metabolite identification programs was tested. The results showed that metabolite programs are time-saving tools but not yet capable of fully automated metabolite profiling. Detection of non-expected metabolites, especially at low concentrations in a complex matrix, is still almost impossible. With low-resolution instruments urine samples proved to be challenging even in a search for expected metabolites. Many false-positive hits were obtained with the automated searching and manual evaluation of the resulting data was required. False positives were avoided by using the higher mass accuracy Q-TOF. Automated programs were useful for constructing product ion methods, but the time-consuming interpretation of mass spectra was done manually. High-quality MS/MS spectra acquired on the QqQ instrument were used for confirmation of the tramadol metabolites. Although the ion trap instrument is of undisputable benefit in MS(n), the low mass cutoff of the ion trap made the identification of tramadol metabolites difficult. Some previously unreported metabolites of tramadol were found in the tramadol urine sample, and their identification was based solely on LC/MS and LC/MS/MS measurements.  相似文献   

12.
The use of a hybrid triple quadrupole-linear ion trap (QqQ(LIT)) mass spectrometer system for a comprehensive study of fragmentation mechanisms is described. The anxiolytic drug, buspirone, was chosen as a model compound for this study. With the advent of a QqQ(LIT) instrument, both the traditional quadrupole and the new linear ion trap scans (LIT) could be performed in a single LC run. In the past, a sample had to be run on two different instruments, namely, a triple quadrupole instrument (QqQ) and a 3D ion trap (3D IT) to obtain similar information. With the new QqQ(LIT) technology, collision-induced dissociation (CID) occur in a quadrupole collision cell, q2, and fragment ions are trapped and analyzed in Q3 operated in LIT mode. In this work, high-sensitivity product ion spectra of buspirone were obtained from the one-stage 'Enhanced Product Ion' scan (EPI) with rich product ions and no low mass cut-off. Furthermore, detailed fragmentation pathways were elucidated by further dissociation of each of the fragment ions in the EPI spectrum using MS(3) mode in the same run. The MS(3) scan was performed by incorporating CID in q2, and trapping, cooling, isolation, and resonance-excitation in Q3 when operating in LIT mode. This approach allowed unambiguous assignment of all fragment ions quickly with fewer experiments and easier interpretation than the previous approach. The overall sensitivity for obtaining complete fragment ion data was significantly improved for QqQ(LIT) as compared with that of QqQ and 3D IT mass spectrometers. This is beneficial for structure determination of unknown trace components. The method allowed structure determination of metabolites of buspirone in rat microsomes at 1 microM concentration, which was a 10-fold lower concentration than was needed for QqQ or 3D IT instruments. The QqQ(LIT) instrument provided a simple, rapid, sensitive and powerful approach for structure elucidation of trace components.  相似文献   

13.
A variety of model biopolymers, including oligonucleotides, oligosaccharides and a synthetic pharmaceutical agent, were sequenced using a triple quadrupole mass spectrometer equipped with an electrospray source and operated in a scan mode referred to as pseudo-MS3. This scan mode consists of three steps: (1) in-source collision-induced dissociation (CID) in the nozzle-skimmer (NS) region, (2) scanning of the fragment ions into the collision cell for further CID, and (3) passing of the secondary fragment ions through the final mass filter at a preselected mass, generally corresponding to the mass of a terminal sequence ion for the biopolymer. The mass spectra are recorded in the precursor ion MS/MS mode where ion selection and detection occur at the third stage of the triple quadrupole but the scan function is determined by the first stage. The advantages and limitations in using this pseudo-MS3 NS/precursor ion MS/MS scan mode for biopolymer sequencing are discussed.  相似文献   

14.
Characterisation of phospholipids was achieved using collision-induced dissociation (CID) with an ion-trap mass spectrometer. The product ions were compared with those obtained with a triple quadrupole mass spectrometer. In the negative ion mode the product ions were mainly sn-1 and sn-2 lyso-phospholipids with neutral loss of ketene in combination with neutral loss of the polar head group. Less abundant product ions were sn-1 and sn-2 carboxylate anions. CID using a triple quadrupole mass spectrometer, however, gave primarily the sn-1 and sn-2 carboxylate anions together with lyso-phosphatidic acid with neutral loss of water. For the ion trap a charge-remote-type mechanism is proposed for formation of the lyso-phospholipid product ions by loss of alpha-hydrogen on the fatty acid moiety, electron rearrangement and neutral loss of ketene. A second mechanism involves nucleophilic attack of the phosphate oxygen on the sn-1 and sn-2 glycerol backbone to form carboxylate anions with neutral loss of cyclo lyso-phospholipids. CID (MS(3) and MS(4)) of the lyso-phospholipids using the ion-trap gave the same carboxylate anions as those obtained with a triple quadrupole instrument where multiple collisions in the collision cell are expected to occur. The data demonstrate that phospholipid species determination can be performed by using LC/MS(n) with an ion-trap mass spectrometer with detection of the lyso-phospholipid anions. The ion-trap showed no loss in sensitivity in full scan MS(n) compared to multiple reaction monitoring data acquisition. In combination with on-line liquid chromatography this feature makes the ion-trap useful in the scanning modes for rapid screening of low concentrations of phospholipid species in biological samples as recently described (Uran S, Larsen A, Jacobsen PB, Skotland T. J. Chromatogr. B 2001; 758: 265).  相似文献   

15.
Capillary liquid chromatography (LC) using a 320 microns column and a flow rate of 10 microL/min has been coupled to an ion trap mass spectrometer using electrospray ionisation (ESI) to enable the rapid and effective identification of metabolites in urine, following oral administration of a novel human neutrophil elastase inhibitor, GW311616. Metabolites were identified from their mass (MS) spectra and tandem (MS/MS) mass spectra using minimal sample (1 microL of urine) and no sample pretreatment. Sensitivity assessment has shown that both molecular weight and structural information is obtainable on as little as 5 pg of compound, making the capillary LC/ion trap system as described an ideal analytical tool for the detection and characterisation of low level metabolites in biofluids (particularly when sample volume is limited). This level of detection was unattainable using a triple quadrupole mass spectrometer operating in full-scan mode, although 200 fg on column was detected using selected reaction monitoring target analysis.  相似文献   

16.
The rapid desorption electrospray ionisation (DESI) of some small molecules and their fragmentation using a triple-quadrupole and a hybrid quadrupole time-of-flight mass spectrometer (Q-ToF) have been investigated. Various scanning modes have been employed using the triple-quadrupole instrument to elucidate fragmentation pathways for the product ions observed in the collision-induced dissociation (CID) spectra. Together with accurate mass tandem mass spectrometry (MS/MS) measurements performed on the hybrid Q-ToF mass spectrometer, unequivocal product ion identification and fragmentation pathways were determined for deprotonated metoclopramide and protonated aspirin, caffeine and nicotine. Ion structures and fragmentation pathway mechanisms have been proposed and compared with previously published data. The necessity for elevated resolution for the differentiation of isobaric ions are discussed.  相似文献   

17.
An automated liquid chromatographic/tandem mass spectrometric (LC/MS/MS) method is presented for the screening and confirmation of 16 beta-blocking drugs in clinical and autopsy urine samples. The described method involved C(18) solid phase extraction, LC separation and MS analysis on a triple-stage quadrupole mass analyser. Samples were initially pre-screened for the presence of any beta-blocking drugs using LC/MS with selected ion monitoring. Any compounds tentatively identified as beta-blocking drugs on the basis of their LC retention time and protonated molecular ion were then automatedly subjected to a second analysis in which the relevant MS/MS product ion mass spectra were acquired. These product ion mass spectra were then automatically searched against a 400-substance mass spectral library containing previously acquired beta-blocking drugs. The results demonstrated that library search of beta-blocking drugs in urine with MS/MS product ion mass spectra was more reliable and produced fewer false negatives than library searching with mass spectra derived from single-stage quadrupole MS. The limits of identification in the MS/MS product ion scan ranged from 0.02 mg l(-1) for carvedilol to 1.2 mg l(-1) for pindolol, the majority of the values being below 0.2 mg l(-1).  相似文献   

18.
The results of the comparison of product-ion tandem mass (MS/MS) spectra recorded on three ion trap mass spectrometers, a triple quadrupole mass spectrometer and a Fourier transform ion cyclotron resonance mass spectrometer are reported. The spectra were recorded in accordance with a simple experimental protocol, which involved the collision-induced dissociation (CID) attenuation of the abundance of the [M+H]+ ion to between 10 and 50% of its original abundance.The degree of similarity between the spectra from four of the mass spectrometers was calculated off-line by comparing the five most abundant ions from the spectrum on each instrument. A percentage fit value (20% for each ion that matches) was calculated by comparing each spectrum against the spectra recorded for the same compound on each instrument. The percentage of the inter-library pairwise comparisons (total = 434) that matched to > or = 60% ranged from 64-89%, depending on the instrument pair. A blind trial was also undertaken using five unknown compounds resulting in 1670 pairwise comparisons with the library entries. The blind trial produced no false positives and correct identifications in all cases. The results of the study have established the basis for the construction of a transferable product-ion MS/MS library.  相似文献   

19.
In this report, the mass spectral analysis of azaspiracid biotoxins is described. Specifically, the collision-induced dissociation (CID) behavior and differences between CID spectra obtained on a triple-quadrupole, a quadrupole time-of-flight, and an ion-trap mass spectrometer are addressed here. The CID spectra obtained on the triple-quadrupole mass spectrometer allowed the classification of the major product ions of the five investigated compounds (AZA 1-5) into five distinct fragment ion groups, according to the backbone cleavage positions. Although the identification of unknown azaspiracids was difficult based on CID alone, the spectra provided sufficient structural information to allow confirmation of known azaspiracids in marine samples. Furthermore, we were able to detect two new azaspiracid analogs (AZA 1b and 6) in our samples and provide a preliminary structural analysis. The proposed dissociation pathways under tandem mass spectrometry (MS/MS) conditions were confirmed by a comparison with accurate mass data from electrospray quadrupole time-of-flight MS/MS experiments. Regular sequential MS(n) analysis on an ion-trap mass spectrometer was more restricted in comparison to the triple-quadrupole mass spectrometer, because the azaspiracids underwent multiple [M + H - nH(2)O](+) (n = 1-6) losses from the precursor ion under CID. Thus, the structural information obtained from MS(n) experiments was somewhat limited. To overcome this limitation, we developed a wide-range excitation technique using a 180-u window that provided results comparable to the triple-quadrupole instrument. To demonstrate the potential of the method, we applied it to the analysis of degraded azaspiracids from mussel tissue extracts.  相似文献   

20.
Electrospray ionization quadrupole time-of-flight (ESI-QqToF) mass spectra of naltrindole hydrochloride 1, naltriben mesylate 2, and naltrexone hydrochloride 3, a common series of morphine opiate receptor antagonists, were recorded using different declustering potentials. Low-energy collision-induced dissociation (CID) MS/MS experiments established the fragmentation routes of these compounds. In addition, re-confirmation of the various established fragmentation routes was effected by conducting a series of ESI-CID-QqTof-MS/MS experiments using non-conventional quasi MS(n) (up to MS8) product ion scans, which were initiated by CID in the atmospheric pressure/vacuum interface using a higher declustering potential. Precursor ion scan analyses were also performed with a conventional quadrupole-hexapole-quadrupole tandem mass spectrometer and allowed the confirmation of the genesis of some diagnostic ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号