首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.

Nicotinic acid esters 3a–c were prepared by the reaction of pyridine-2(1H)-thione derivative 1 with α-halo-reagents 2a–c. Compounds 3a–c underwent cyclization to the corresponding thieno[2, 3-b]pyridines 4a–c via boiling in ethanol/piperidine solution. Compounds 4a–c condensed with dimethylformamide-dimethylacetal (DMF-DMA) to afford 3-{[(N,N-dimethylamino)methylene]amino}thieno[2, 3-b]- pyridine derivatives 6a–c. Moreover, compounds 4a–c and 6a–c reacted with different reagents and afforded the pyrido[3′,2′:4, 5]thieno[3, 2-d]pyrimidine derivatives 10a–d, 11a–c, 12a,b, 14a,b, 17, and 19. In addition, pyrazolo[3, 4-b]pyridine derivative 20 (formed via the reaction of 1 with hydrazine hydrate) reacted with ethylisothiocyanate yielded the thiourea derivative 21. Compound 21 reacted with α-halocarbonyl compounds to give the 3-[(3H-thiazol-2-ylidene)amino]-1H-pyrazolo[3, 4-b]pyridine derivatives 23a–c, 25, and 27a,b.  相似文献   

2.
Pyridine-2(1H)-thione 5 was synthesized from the reaction of 3-[3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-4-yl]-1-phenylpropenone (3) and cynothioacetamide (4). Compound 5 reacted with halogented compounds 6a–e to give 2-S-alkylpyridine derivatives 7a–e, which could be in turn cyclized into the corresponding thieno[2,3-b]-pyridine derivatives 8a–e. Compound 8a reacted with hydrazine hydrate to give 9. The latter compound reacted with acetic anhydride (10a), formic acid (10b), acetic acid, ethyl acetoacetate, and pentane-2,4-dione to give the corresponding pyrido[3′,2′:4,5]thieno-[3,2-d]pyrimidine 13a,b, pyrazolo[3′,4′:4,5]thieno[3,2-d]pyridine 14 and thieno[2,3-b]-pyridine derivatives 18 and 20, respectively. Alternatively, 8c reacted with 10a,b and nitrous acid to afford the corresponding pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidine 24a,b and pyrido[3′,2′:4,5]thieno[3,2-d][1,2,3]triazine 26 derivatives, respectively. Finally compound 5 reacted with methyl iodide to give 2-methylthiopyridine derivative 27, which could be reacted with hydrazine hydrate to yield the corresponding pyrazolo[3,4-b]-pyridine derivative 29.  相似文献   

3.
2-acetyl-3-amino-4,6-dimethylthieno[2,3-b]pyridine 1 reacted with dimethoxy-tetrahydrofuran in acetic acid and ethyl cyanoacetate in the presence of ammonium acetate or with NaNO2 in the presence of an AcOH/HCl mixture to produce 2–4. Compound 2 reacted with aromatic aldehydes, semicarbazide hydrochloride, thiosemicarbazide, and phenyl hydrazine or with hydrazine hydrate to give compounds 5a–c and 11a–d, respectively.

Chalcone 5 reacted with hydrazines, hydroxylamine hydrochloride, or thiourea to produce compounds 6–9. Thiosemicarbazone 11b reacted with α -haloester to produce the corresponding thiazolidinone derivatives 12a, b ; also it reacted with ω -bromoacetophenone to give thiazoline derivatives 13a, b .  相似文献   

4.
Abstract

5-Anthracenylidene- and 5-(4-benzyloxy-3-methoxy)benzylidene-hydantoin and 2-thiohydantoin derivatives 3a-g were prepared by condensation of anthracene-9-carboxaldehyde and 4-benzyloxy-3-methoxybenzylaldehyde with hydantoin and 2-thiohydantoin derivatives. Compounds 3a, b, f undergo Mannich reaction with formaldehyde and morpholine to give the corresponding Mannich products 4a–c. For the synthesis of alkylmercaptohydantoin 5a–o, the potassium salt of compounds 3a, b, e, f were reacted with an alkylhalide, either methyl iodide, phenacyl bromide, ethyl bromo acetate, allyl bromide, or methallyl bromide, under stirring at room temperature to afford the alkylmercaptohydantoins 5a–o. Acid hydrolysis of compounds 5a–c afforded the corresponding arylidene-hydantoin derivatives 3c, d, g. 2-Methylmercapto-hydantoin derivatives 5a, c were reacted with some secondary amines such as morpholine or piperidine to afford 5-(4-benzyloxy-3-methoxy)benzylidene-2-morpholino- or piperidino glycocyamidine derivatives 7a, 5-anthracenylidene-2-morpholin-, or piperidino glycocyamidine derivatives 7b, c.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.

GRAPHICAL ABSTRACT  相似文献   

5.
Abstract

The reaction of compound 1 with triethyl orthoformate afforded 2, which in turn reacted with CS2 and active methlyene compounds or malononitrile to give dithiolane and 4-malononitrile methylene derivatives 3,4, respectively. Treatment of compound 4 with active methylene compounds afforded spiro cyclopentene derivatives 5a-c. Compound 1 was reacted with bromomalononitrile or CS2 and halocompounds to afford furo-. thieno- and dithiolano-pyrazole derivatives 6–11, respectively. The reaction of compound 12 with phenacyl bromide or benzylidenemalononitrile furnished oxathiol-2-ylidene and pyridinethione derivatives 13,14, respectively. The dibromo derivative 16 was reacted with CS2 and active methylenes or malononitrile to obtain spiro dithietanes 17a-e and 4-dicyano-methlyene derivative 22, respectively. Compounds 17 underwent a cycloaddition reaction with thioglycolic acid, N-phenylbenzohydrazindoyl bromide, 2,5-dimethylfuran and 1-phenyl-3,5-pyrazolidinedi one to give cycloadducts 18–21, respectively. Treatment of > o-aminothiophenol or o-phenylenediamine with the dicyano compound 22 leads to the formation of spiro thiazepine or spiro diazine derivatives 23a,b . The arylidene derivatives 24 was reacted with S,S-acetals, N,S-acetals or ammonium dithiocarbamate to afford dithiane, oxazine or pyrazolodithiocarbamate derivatives 25–29, respectively. Chemoselective cyclization of compound 29 with H2SO4, NaOH or MeI gave compounds 30–32, respectively. Benzopyrano derivatives 34,36 were obtained through the reaction of compound 1 with a mixture of thiourea, triethyl orthoformate and ethyl cyanoacetate or with cyanoketene S,S diacetals, respectively.  相似文献   

6.
《合成通讯》2013,43(16):2523-2535
1,3-Dihydro-4-phenyl-1,5-benzodiazepin-2-one 1 was treated with bromine in 1:1 molar ratio to get the corresponding 3-bromo derivative 2 which in turn reacted with different nucleophiles to get the corresponding 3-substituted derivatives 3–11. The cyclized compounds 4a , 5a , 7a,b , and 9a–c were achieved on refluxing compounds 4, 5, 6a,b , or 8 a–c respectively in diphenyl ether. Compound 1 was benzoylated with benzoyl chloride to give the corresponding 1-benzoyl derivative 12 which reacted with bromine in 1:2 molar ratio to yield the corresponding 3,3-dibromo derivative 13. Spiro benzodiazepines 14a–d–16 were obtained by reacting compound 13 with the proper bidentates. Compound 1 was treated with formaldehyde and secondary amines or thiols to give Mannich bases or sulphides 17–21, respectively.  相似文献   

7.
Condensation of 4-acetyl-5-methyl-2-phenyl-2,4-dihydropyrazol-3-one (1) with hydrazine derivatives (2a–d) afforded hydrazone derivatives (3a–d), which reacted with alkyl halides 4a–c to give bis(alkylthio)methylene derivatives (5a–e). Also, 3a,b reacted with hydrazonyl halides 6a–d to give 1,3,4-thiadiazole (7a–d). Cyclization of 3c with ethyl bromoacetate and haloketones gave thiazolidinone and thiazole derivatives (8, 10a,b) respectively. Treatment of hydrazone (3d) with benzylidine malononitrile 13a,b gave pyridine (14a,b). In addition, cyclocondensation of 3d with phenolic aldehydes furnished coumarin derivatives (16a–c). Coupling of 3d with heterocyclic diazonium salts gave triazol[5,1-c]triazine (20) and pyrazolo[5,1-c]triazine (22). Some of the prepared products showed potent antimicrobial activity.  相似文献   

8.
3-Oxo-N-{4-[(pyrimidin-2-ylamino)sulfonyl]phenyl}butanamide 1 reacts with arylidinecyanothioacetamide in refluxing ethanolic TEA to give the pyridinethione 2 rather than thiopyrane 4. Compound 2 reacts with α-haloketones to give the s-alkylated derivatives 7a–e. Compound 7a–e undergoes cyclization into thieno[2,3-b]pyridine derivatives 8a–e. The saponification of 8a gives the amino acid 9, which affords 10 when refluxed in Ac2O. The treatment of 10 with NH4OAc/AcOH gives 11. Compound II is also obtained when 8e is refluxed in Ac2O. The reaction of 8a with hydrazine hydrate gives 12 and with formamide gives 13. Compound 13 also is obtained from the reaction of 8e with triethylorthoformate. The acetylation of 8a with Ac2O gives the amide derivative 14, which, on treatment with aromatic amines, affords 15a–c. Compounds 15a–c are cyclized with H2SO4 to 16a–c. Compound 16 is obtained also from the acetylation of compound 8c, d by Ac2O. Reactions of compound 8e with CS2 in refluxing dioxane afford 17. The diazotization and self-coupling of 8e give the pyridothienotriazine 18. Finally, the chloronation of compound 13 with POCl3 affords the chloride derivative 19.  相似文献   

9.
2-Ethoxycarbonylmethylidine-4,5-dihydro-4-thiazolinone (1) was condensed with bis aromatic aldehydes such as terephthalaldehyde or 4,4′-bisformyl-diphenylether (2a,b) (2:1 molar ratio) and furnished bis-4-thiaozlidinones (3a,b). The reaction of (3a,b) with malononitrile and aromatic aldehydes (1:2:2 molar ratio) gave bis thiazolopyridines (4a–d). Bis-(thiazolopyridine) derivative (6) was obtained by reaction of 4-thiaozlinone (5c) with bis aldehyde (2b) in refluxing ethanol containing piperidine. Cyclization of 4-thiazolinones (5a,b) with different α-cyanocinnamonitriles gave thiazolo[3,2-a]pyridines (7a–d). Compound 9 was produced via the reaction of 8 with thioglycolic acid, which reacted with p-chlorobenzaldehyde to produce 10. Compound 10 was condensed with hydrazine hydrate and afforded 11. Compounds 12 and 16a,b were produced by the reaction of 9 with isatin and α-ethoxycarbonylcinnamonitriles, respectively.  相似文献   

10.
Ethyl 4,6-dimethyl-3-(pyrrol-1-yl) selenolo[2,3-b]pyridine-2-carboxylate (2) was synthesized by the reaction of previously prepared ethyl 3-amino-4,6-dimethyl selenolo[2,3-b]pyridine-2-carboxylate (1) with 2,5-dimethoxytetrahydrofuran in acetic acid. The pyrrolyl ester (2) was converted into the corresponding carbohydrazide 3 which reacted with acetyl acetone, aromatic aldehydes, carbon disulfide in pyridine, and sodium nitrite to afford the corresponding dimethyl pyrazolyl 4, arylidene carbohydrazides 5a–d, oxadiazolyl thiole 6, and caboazide compound 8, respectively. The carboazide 8 reacted with different alcohols and amines to give the corresponding carbamates 9a–c and the aryl urea derivatives 10a–d. Heating of carboazide 8 in dry xylene afforded the pyridoselenolo-pyrrolopyrazinone 11. The latter compound was used as a versatile starting precursor for synthesis of other pyridoselenolo-pyrrolopyrazine compounds. The newly synthesized compounds and their derivatives were characterized by elemental analysis and spectroscopy (IR, 1H-NMR, and mass spectra). Some of the newly synthesized pyrrolyl selenolopyridine compounds showed remarkable antioxidant activity compared to ascorbic acid.  相似文献   

11.
Arylidene malonate derivatives 2a–c reacted with Lawesson's reagent (1) LR in equimolar ratio to yield the oxathiaphosphorine derivatives 3a–c. The behaviour of LR towards cyclic ketones was also examined and yielded the thioxanthene derivatives 5a,b. On the other hand, arylidene pyrazolone 8 reacted with LR to give the phosphole 10. Aminobenzenethiophene 11 reacted with LR under reflux to produce the corresponding thiazaphosphorine 12.  相似文献   

12.
《合成通讯》2013,43(22):3557-3567
A simple and easy method is provided for the synthesis of the novel pyridinone derivatives (3a–e), (8a–c) and (10a–c) by the reaction of ketene acetals (2a–e), (7a–c) and (9a–c) with ethyl cyanoacetate respectively. Compounds (3b–d) reacted with triethyl orthoformate to afford the pyridinone derivatives (4-6) respectively. Compound 7a reacted with ethyl acetoacetate or diethyl malonate to give thiazolopyridinone derivative 11 or 12 respectively.  相似文献   

13.
N-1-Naphthyl-3-oxobutanamide (1) reacts with arylidinecyanothioacetamide 2a–c in ethanol/piperidine solution under reflux to yield the pyridine-2(1H)-thiones 6a–c. Compound 6a reacts with α-haloketones 7a–e to give the 6-thio-N-1-naphthyl-nicotinamides derivatives 8a–e, which cyclized to thieno[2,3-b]pyridine derivatives 9ae. The reaction of compound 9a with hydrazine hydrate and formamide gives the thieno[2,3-b]pyridine carbohydrazide derivative 10 and pyridothienopyrimidine derivative 11, respectively. Reaction of 9a with benzoyl isothiocyanate gave thiourea derivative 12. Compound 12, upon treatment with alcoholic NaOH, gave pyridothienopyrimidine 13. Saponifications of 9a gave the amino acid 15, which affords 16 when refluxed in Ac2O. Treatment of compound 16 with AcONH4/AcOH gave 17. Diazotization and self-coupling of 9b gave the pyridothienotriazine 18. Also, diazotization of the ortho-aminohydrazide 10 give the corresponding azide 19, which was subjected to Curtius rearrangement in boiling xylene to give imidazothienopyridine 20. Reaction of 10 with either formic acid or triethylorthoformate and phenyl isothiocyanate gave the corresponding pyridothienotriazepines 22 and 23, respectively. The interaction of 10 with acetylacetone furnished the pyrazolyl derivative 24. The structures of the synthesized compounds were established from their analytical and spectral data.  相似文献   

14.
New pyrido[2,1-b]benzothiazoles 2a,b, 3, 2-aminoquinoline 4, coumarin 5, cyclohexane 6a,b, and 2-(1,3-benzothiazol-2-yl) methylidene 7 derivatives have been prepared via the reaction of 2-cyanomethyl-1,3-benzothiazole 1 with α,β-unsaturated nitriles, α-chloro ethyl acetoacetate, 2-amino benzaldehyde, 5-chlorosalicylaldehyde, α,β-unsaturated ketone, and 2-aminobenzothiol hydrochloride. 2-Thiazole derivatives 9a,b were prepared from compound 1, which was converted to thioamide derivative 8 by reaction with HCl and thioacetamide, and cyclization of this thioamide with α-halogenated ketone gave 9a,b. Reaction of compound 1 and ethylacetate to afford ketonitrile 10. Treatment of 10 with hydrazine hydrate afforded aminopyrazole derivative 11. Substituted 4-aminothiophene 13 has been synthesized by reaction of compound 1 with p-chlorophenyl isothiocyanate. The resulting product 12 was then alkylated with phenacylbromide. Phenyl-2-yl-carbonylhydroximoyl-chloride 15 was prepared by treatment of the corresponding sulfonium bromide with sodium nitrite and hydrochloric acid in dioxane. Compound 15 reacted with α-(1,3-benzothiazol-2-yl) cinnamonitrile 14 afforded the isoxazole derivatives 16. Reaction of coumarin derivative 5 with anthranilamide, pyrimidine diamine, thiosemicarbazide, acetylacetone, and hydrazine hydrate yielded quinazoline-2-one 17, purine 18, triazole 19, 2-acetyl naphthalene-2-one 20, and N-aminoquinoline-2-one 21 derivatives.  相似文献   

15.
A novel group of 6-iodoquinazolin-4(3H)-one derivatives was prepared. The reaction of the benzoxazinone 3 with various nitrogen nucleophiles such as formamide and hydrazine hydrate and also the reaction of the isopropylquinazolinone 4 with hydrazonyl chloride have been shown to proceed with a high degree of regioselectivity at C(2). Spiro heterocycles have been found to play fundamental roles in biological processes and have exhibited diversified biological activity and pharmacological and therapeutical properties; thus reaction of acetohydrazides 10a–c afforded the spiro compounds 11a–c. The acetohydrazide derivative 7 reacted with carbon electrophiles such as acetylacetone, ethyl acetoacetate, acid chlorides, and benzaldehyde to give some interesting heterocyclic compounds 12–16, respectively. The structures of all the synthesized compounds were inferred by infrared, 1H NMR, and mass spectra as well as elemental analyses. The antimicrobial activities of some of the synthesized products were preliminarily evaluated.  相似文献   

16.
Condensation of thiazolinone 1 with benzaldehydes 2a, b in ethanolic piperidine afforded the methylidene derivatives 3a, b. Cyclocondensation of compound 3b with malononitrile furnished the novel thiazolo[3,2-a]-pyridine 5. Also, compound 3b was condensed with dimethylformamide-dimethylacetal (DMF-DMA) and triethylortho-formate to yield N,N-dimethylamino 6 and ethoxymethylene 7 derivatives respectively. The novel thiazolo[3,2-a]pyridines 10a, b were obtained by cyclocondensation of compounds 3a, b with benzylidene-malononitriles 8a, b. Similarly, cyclocondensation of compound 3b with benzylidenemalononitrile 11 afforded the thiazolopyridines 12a–c. Ternary condensation of compound (12), 4-morpholinobenzaldehyde 2b and malononitrile (1:1:1 molar ratio) produced the thiazolopyridines 14a–c. When compound 10b was subjected to react with malononitrile in dioxane/piperidine under reflux the novel condensed heterocyclic system 18 was obtained. Treatment of ortho-aminocarbonitrile 10b with formic acid, aromatic aldehyde and triethylorthoformate furnished the thiazolo[2′,3′:1,6] pyrido[2,3-d] pyrimidine 20, azomethine 21a, b and ethoxymethylene 22 derivatives respectively. The structure of the synthesized compounds was established by analytical and spectral data.  相似文献   

17.
2-Keto-3-mercaptocinchoninic acid derivatives 1a and b react with Schiff's bases 2a–d in toluene at refluxing temperature to give thiazino[6,5-c]quinoline derivatives 4a–h. Also, refluxing of 1a and b with arylazomalononitriles 5a–d in acetic acid afforded the thiazolo[6,5-c]quinoline derivatives 7a–d. The structure of all the newly synthesized products was confirmed based on elemental and spectral data.  相似文献   

18.
3‐Oxo‐3‐(pyrrol‐2‐yl)‐propanenitrile 1 coupled with aromatic diazonium salts to yield the corresponding 2‐arylhydrazones 2ac. The latter products reacted with chloroacetonitrile and ethyl chloroacetate to yield 4‐aminopyrazole derivatives 5af. Reaction of 2 with hydrazine hydrate led to formation of 5‐amino‐4‐arylazopyrazole 6ac. Compound 1 reacted also with trichloroacetonitrile to yield enamine 7, which in turn reacted with hydrazine hydrate to yield 5‐amino‐3‐(pyrrol‐2‐yl)‐pyrazole‐4‐carbonitrile 8.  相似文献   

19.
Pyridine-2(1H)-thione derivatives 3a,b were synthesized from the reaction of 1-(phenyl-sulfanyl)acetone (1) and cinnnamonitrile derivatives 2a,b. Compounds 3a,b reacted with different halogenated reagents 7a–f to give 2-S-alkylpyridine derivatives 8a–l, which could be, in turn, cyclized into the corresponding thieno[2,3-b]pyridine derivatives 9a–l. Compounds 9d,j reacted with acetic anhydride, formic acid, carbon disulfide, phenyl isothiocyanate, and nitrous acid to yield the corresponding pyrido[3′,2′:4,5]thieno[2,3-d]pyrimidine 12a,b, 15a,b, 17a,b, 20a,b, and pyrido[3′,2′:4,5]thieno[2,3-d][1,2,3]triazinone derivatives 22a,b, respectively.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

20.
We prepared a thieno[2,3-d]pyrimidine compound fused with a thiazolo ring to produce biologicaly active compounds. In a one-step reaction, 2-arylmethylene derivative (3) was prepared via the reaction of a ternary mixture of 2-thioxo-1,2,3,4-tetrahydrocyclohepteno[4,5]thieno[2,3-d]pyrimi-dine-4-one (2), cloroacetic acid, and a proper aldehyde. The reaction of 2 with 3-chloropent-2,4-dione in ethanolic potassium hydroxide yielded the S-acetylacetone derivative 4e. The latter compound reacted with hydrazine hydrate and phenyl hydrazine to give 2-pyrazolthio derivatives 8a,b, respectively. Compound 4e also underwent cyclization on boiling with acetic anhydride/pyridine solution to form 2-acetyl-3-methyl thiazolo[3,2-a]cyclohepteno[4,5]thieno[2,3-d] pyrimidine-5-one (9). To support the structure 9, it gave a characteristic reaction for the 2-acetyl group. The 2-methylthio derivatives 4a underwent further alkylation at N3 to give 6a,b. The purpose of the synthesis of thienopyrimidine derivatives is due to high biological activities. The 4-oxo-thienopyrimidine derivatives acted as inhibitors of adenosine kinase, platelet aggregation, antilukemia, and anticancer activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号